Presentation is loading. Please wait.

Presentation is loading. Please wait.

Zhi Yang, MS Department of Preventive Medicine, USC Jul 29, 2018

Similar presentations


Presentation on theme: "Zhi Yang, MS Department of Preventive Medicine, USC Jul 29, 2018"โ€” Presentation transcript:

1 Zhi Yang, MS Department of Preventive Medicine, USC Jul 29, 2018
Statistical Approach for Investigating Change in Mutational Processes During Cancer Growth and Development Zhi Yang, MS Department of Preventive Medicine, USC Jul 29, 2018 Hello everyone My name is Zhi, I am a third year Phd student in the biostatistics program. In project four, we also do hierarchical modeling but in tumors by using somatic mutations. More specifically, we will describe the somatic mutation with mutational signature, which is a concept I will introduce later in the talk. Therefore, we use hierarchical modeling of mutational signatures in tumors to capture the change during the tumor growth.

2 A Unifying Model to Test Difference?
HiLDA = โ€œHierarchical Latent Dirichlet Allocationโ€ Uncertainty in Proportions Somatic mutations pmsignature Estimated Proportions, ๐’’ Are ๐’’ different in two groups? Regress ๐’’ on ๐‘ฎ (0=branch, 1=trunk) HiLDA If people would like to infer the difference in signature proportions, they can take the point estimates by using any current methods, for example, R package pmsignature by assuming independence. Then, take the fractions to regress on the indicator variable group, 1 as trunk 2

3 Hierarchical Latent Dirichlet Allocation
๐’‘ ๐’Š ๐ŸŽ ๐’‘ ๐’Š ๐Ÿ Hyperprior ๐’’ ๐‘– 1 ๐‘ ๐‘–,๐‘— 1 ๐‘‹ ๐‘–,๐‘— 1 ๐’‡ ๐‘˜ ๐‘˜=1โ€ฆ๐พ ๐‘—=1โ€ฆ ๐‘› ๐‘– 1 ๐‘–=1โ€ฆ๐‘ ๐‘—=1โ€ฆ ๐‘› ๐‘– 0 ๐‘‹ ๐‘–,๐‘— 0 ๐‘ ๐‘–,๐‘— 0 ๐’’ ๐‘– 0 Signature Latent signature assignment Observed Mutation Proportions ๐œน ๐‘˜ Hyperprior Branch Trunk Adding animation for hyperprior 3

4 Methods: HiLDA Branch - Trunk 2nd sig 3rd sig Coefficient -0.786 0.984
Group ๐’ˆ Tumor ๐’Š log(fractions) of Signature ๐’Œ 1st sig 2nd sig 3rd sig Trunk 1 ๐œถ ๐Ÿ + ๐œธ ๐Ÿ,๐Ÿ ๐ŸŽ ๐œถ ๐Ÿ‘ + ๐œธ ๐Ÿ,๐Ÿ‘ ๐ŸŽ 2 ๐œถ ๐Ÿ + ๐œธ ๐Ÿ,๐Ÿ ๐ŸŽ ๐œถ ๐Ÿ‘ + ๐œธ ๐Ÿ,๐Ÿ‘ ๐ŸŽ โ€ฆ 16 ๐œถ ๐Ÿ + ๐œธ ๐Ÿ๐Ÿ”,๐Ÿ ๐ŸŽ ๐œถ ๐Ÿ‘ + ๐œธ ๐Ÿ๐Ÿ”,๐Ÿ‘ ๐ŸŽ Branch ๐œถ ๐Ÿ + ๐œท ๐Ÿ + ๐œธ ๐Ÿ,๐Ÿ ๐Ÿ ๐œถ ๐Ÿ‘ + ๐œท ๐Ÿ‘ + ๐œธ ๐Ÿ,๐Ÿ‘ ๐Ÿ ๐œถ ๐Ÿ + ๐œท ๐Ÿ + ๐œธ ๐Ÿ,๐Ÿ ๐Ÿ ๐œถ ๐Ÿ‘ + ๐œท ๐Ÿ‘ + ๐œธ ๐Ÿ,๐Ÿ‘ ๐Ÿ ๐œถ ๐Ÿ + ๐œท ๐Ÿ + ๐œธ ๐Ÿ๐Ÿ”,๐Ÿ ๐Ÿ ๐œถ ๐Ÿ‘ + ๐œท ๐Ÿ‘ + ๐œธ ๐Ÿ๐Ÿ”,๐Ÿ‘ ๐Ÿ ๐‘ž ๐‘–,๐‘˜ ๐‘” = ๐œ™ ๐‘–,๐‘˜ ๐‘” ๐‘˜ ๐œ™ ๐‘–,๐‘˜ ๐‘” ; ๐‘™๐‘œ๐‘” ๐‘ž ๐‘–,๐‘˜ ๐‘” ๐‘ž ๐‘–, 1 ๐‘” = ๐œถ ๐’Œ + ๐œท ๐’Œ + ๐œธ ๐’Š,๐’Œ ๐’ˆ ๐œถ ๐’Œ : Baseline difference between 1st and ๐‘˜ ๐‘กโ„Ž signature ๐œท ๐’Œ : Difference between two groups in ๐‘˜ ๐‘กโ„Ž signature ๐œธ ๐’‹๐’Œ ๐’ˆ : Variation for ๐‘˜ ๐‘กโ„Ž signature of ๐‘– ๐‘กโ„Ž tumor in ๐‘” ๐‘กโ„Ž group 4 Group ๐’ˆ Tumor ๐’Š log(fractions) of Signature ๐’Œ 1st sig 2nd sig 3rd sig Trunk 1 ๐œถ ๐Ÿ + ๐œธ ๐Ÿ,๐Ÿ ๐ŸŽ ๐œถ ๐Ÿ‘ + ๐œธ ๐Ÿ,๐Ÿ‘ ๐ŸŽ 2 ๐œถ ๐Ÿ + ๐œธ ๐Ÿ,๐Ÿ ๐ŸŽ ๐œถ ๐Ÿ‘ + ๐œธ ๐Ÿ,๐Ÿ‘ ๐ŸŽ โ€ฆ 16 ๐œถ ๐Ÿ + ๐œธ ๐Ÿ๐Ÿ”,๐Ÿ ๐ŸŽ ๐œถ ๐Ÿ‘ + ๐œธ ๐Ÿ๐Ÿ”,๐Ÿ‘ ๐ŸŽ Branch ๐œถ ๐Ÿ + ๐œท ๐Ÿ + ๐œธ ๐Ÿ,๐Ÿ ๐Ÿ ๐œถ ๐Ÿ‘ + ๐œท ๐Ÿ‘ + ๐œธ ๐Ÿ,๐Ÿ‘ ๐Ÿ ๐œถ ๐Ÿ + ๐œท ๐Ÿ + ๐œธ ๐Ÿ,๐Ÿ ๐Ÿ ๐œถ ๐Ÿ‘ + ๐œท ๐Ÿ‘ + ๐œธ ๐Ÿ,๐Ÿ‘ ๐Ÿ ๐œถ ๐Ÿ + ๐œท ๐Ÿ + ๐œธ ๐Ÿ๐Ÿ”,๐Ÿ ๐Ÿ ๐œถ ๐Ÿ‘ + ๐œท ๐Ÿ‘ + ๐œธ ๐Ÿ๐Ÿ”,๐Ÿ‘ ๐Ÿ Group ๐’ˆ Tumor ๐’Š log(fractions) of Signature ๐’Œ 1st sig 2nd sig 3rd sig Trunk 1 ๐œถ ๐Ÿ + ๐œธ ๐Ÿ,๐Ÿ ๐ŸŽ ๐œถ ๐Ÿ‘ + ๐œธ ๐Ÿ,๐Ÿ‘ ๐ŸŽ 2 ๐œถ ๐Ÿ + ๐œธ ๐Ÿ,๐Ÿ ๐ŸŽ ๐œถ ๐Ÿ‘ + ๐œธ ๐Ÿ,๐Ÿ‘ ๐ŸŽ โ€ฆ 16 ๐œถ ๐Ÿ + ๐œธ ๐Ÿ๐Ÿ”,๐Ÿ ๐ŸŽ ๐œถ ๐Ÿ‘ + ๐œธ ๐Ÿ๐Ÿ”,๐Ÿ‘ ๐ŸŽ Branch ๐œถ ๐Ÿ + ๐œท ๐Ÿ + ๐œธ ๐Ÿ,๐Ÿ ๐Ÿ ๐œถ ๐Ÿ‘ + ๐œท ๐Ÿ‘ + ๐œธ ๐Ÿ,๐Ÿ‘ ๐Ÿ ๐œถ ๐Ÿ + ๐œท ๐Ÿ + ๐œธ ๐Ÿ,๐Ÿ ๐Ÿ ๐œถ ๐Ÿ‘ + ๐œท ๐Ÿ‘ + ๐œธ ๐Ÿ,๐Ÿ‘ ๐Ÿ ๐œถ ๐Ÿ + ๐œท ๐Ÿ + ๐œธ ๐Ÿ๐Ÿ”,๐Ÿ ๐Ÿ ๐œถ ๐Ÿ‘ + ๐œท ๐Ÿ‘ + ๐œธ ๐Ÿ๐Ÿ”,๐Ÿ‘ ๐Ÿ Branch - Trunk 2nd sig 3rd sig Coefficient -0.786 0.984 SE 0.152 0.587 P value <0.001 0.094

5 Results: Two-step Method v.s. HiLDA
Branch-Trunk 2nd Sig 3rd Sig Coefficient -0.786 0.984 -0.795 3.417 SE 0.152 0.587 0.179 1.424 P value <0.001 0.094 0.016 The new signatures (3rd signature) tend to appear significantly more often in the branch mutations (๐‘=0.016) by using the new model (HiLDA) after considering uncertainty. 5 Branch - Trunk 2nd sig 3rd sig Coefficient -0.786 0.984 SE 0.152 0.587 P value <0.001 0.094


Download ppt "Zhi Yang, MS Department of Preventive Medicine, USC Jul 29, 2018"

Similar presentations


Ads by Google