Download presentation
Presentation is loading. Please wait.
Published byฮฯฯฯ ฯฮฟฯ ฮฯ ฯฯฮฑฮฏฮฟฯ Modified over 6 years ago
1
Zhi Yang, MS Department of Preventive Medicine, USC Jul 29, 2018
Statistical Approach for Investigating Change in Mutational Processes During Cancer Growth and Development Zhi Yang, MS Department of Preventive Medicine, USC Jul 29, 2018 Hello everyone My name is Zhi, I am a third year Phd student in the biostatistics program. In project four, we also do hierarchical modeling but in tumors by using somatic mutations. More specifically, we will describe the somatic mutation with mutational signature, which is a concept I will introduce later in the talk. Therefore, we use hierarchical modeling of mutational signatures in tumors to capture the change during the tumor growth.
2
A Unifying Model to Test Difference?
HiLDA = โHierarchical Latent Dirichlet Allocationโ Uncertainty in Proportions Somatic mutations pmsignature Estimated Proportions, ๐ Are ๐ different in two groups? Regress ๐ on ๐ฎ (0=branch, 1=trunk) HiLDA If people would like to infer the difference in signature proportions, they can take the point estimates by using any current methods, for example, R package pmsignature by assuming independence. Then, take the fractions to regress on the indicator variable group, 1 as trunk 2
3
Hierarchical Latent Dirichlet Allocation
๐ ๐ ๐ ๐ ๐ ๐ Hyperprior ๐ ๐ 1 ๐ ๐,๐ 1 ๐ ๐,๐ 1 ๐ ๐ ๐=1โฆ๐พ ๐=1โฆ ๐ ๐ 1 ๐=1โฆ๐ ๐=1โฆ ๐ ๐ 0 ๐ ๐,๐ 0 ๐ ๐,๐ 0 ๐ ๐ 0 Signature Latent signature assignment Observed Mutation Proportions ๐น ๐ Hyperprior Branch Trunk Adding animation for hyperprior 3
4
Methods: HiLDA Branch - Trunk 2nd sig 3rd sig Coefficient -0.786 0.984
Group ๐ Tumor ๐ log(fractions) of Signature ๐ 1st sig 2nd sig 3rd sig Trunk 1 ๐ถ ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ธ ๐,๐ ๐ 2 ๐ถ ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ธ ๐,๐ ๐ โฆ 16 ๐ถ ๐ + ๐ธ ๐๐,๐ ๐ ๐ถ ๐ + ๐ธ ๐๐,๐ ๐ Branch ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐๐,๐ ๐ ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐๐,๐ ๐ ๐ ๐,๐ ๐ = ๐ ๐,๐ ๐ ๐ ๐ ๐,๐ ๐ ; ๐๐๐ ๐ ๐,๐ ๐ ๐ ๐, 1 ๐ = ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ : Baseline difference between 1st and ๐ ๐กโ signature ๐ท ๐ : Difference between two groups in ๐ ๐กโ signature ๐ธ ๐๐ ๐ : Variation for ๐ ๐กโ signature of ๐ ๐กโ tumor in ๐ ๐กโ group 4 Group ๐ Tumor ๐ log(fractions) of Signature ๐ 1st sig 2nd sig 3rd sig Trunk 1 ๐ถ ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ธ ๐,๐ ๐ 2 ๐ถ ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ธ ๐,๐ ๐ โฆ 16 ๐ถ ๐ + ๐ธ ๐๐,๐ ๐ ๐ถ ๐ + ๐ธ ๐๐,๐ ๐ Branch ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐๐,๐ ๐ ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐๐,๐ ๐ Group ๐ Tumor ๐ log(fractions) of Signature ๐ 1st sig 2nd sig 3rd sig Trunk 1 ๐ถ ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ธ ๐,๐ ๐ 2 ๐ถ ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ธ ๐,๐ ๐ โฆ 16 ๐ถ ๐ + ๐ธ ๐๐,๐ ๐ ๐ถ ๐ + ๐ธ ๐๐,๐ ๐ Branch ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐,๐ ๐ ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐๐,๐ ๐ ๐ถ ๐ + ๐ท ๐ + ๐ธ ๐๐,๐ ๐ Branch - Trunk 2nd sig 3rd sig Coefficient -0.786 0.984 SE 0.152 0.587 P value <0.001 0.094
5
Results: Two-step Method v.s. HiLDA
Branch-Trunk 2nd Sig 3rd Sig Coefficient -0.786 0.984 -0.795 3.417 SE 0.152 0.587 0.179 1.424 P value <0.001 0.094 0.016 The new signatures (3rd signature) tend to appear significantly more often in the branch mutations (๐=0.016) by using the new model (HiLDA) after considering uncertainty. 5 Branch - Trunk 2nd sig 3rd sig Coefficient -0.786 0.984 SE 0.152 0.587 P value <0.001 0.094
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.