Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 12 The Cell Cycle.

Similar presentations


Presentation on theme: "Chapter 12 The Cell Cycle."— Presentation transcript:

1 Chapter 12 The Cell Cycle

2 By the end of this chapter you should be able to:
Describe the structural organization of the prokaryotic genome and the eukaryotic genome List the phases of the cell cycle; describe the sequence of events during each phase List the phases of mitosis and describe the events characteristic of each phase Draw or describe the mitotic spindle, including centrosomes, kinetochore microtubules, nonkinetochore microtubules, and asters Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

3 Compare cytokinesis in animals and plants
Describe the process of binary fission in bacteria and explain how eukaryotic mitosis may have evolved from binary fission Explain how the abnormal cell division of cancerous cells escapes normal cell cycle controls Distinguish between benign, malignant, and metastatic tumors Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

4 Overview: The Key Roles of Cell Division
The ability to reproduce best distinguishes living from nonliving. The continuity of life is based on the reproduction of cells, or cell division Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

5 Multicellular organisms depend on cell division for:
In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms depend on cell division for: Development from a fertilized cell Growth Repair Cell division is part of the cell cycle, the life of a cell from formation to its own division Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

6 (a) Reproduction (b) Growth and development (c) Tissue renewal
Fig. 12-2 100 µm 200 µm 20 µm (a) Reproduction (b) Growth and development (c) Tissue renewal Figure 12.2 The functions of cell division Single-celled Amoeba dividing into two cells Sand dollar embryo after the first division of the fertilized egg. Dividing bone marrow cells

7 Most cell division results in daughter cells with identical DNA
Concept 12.1: Cell division results in genetically identical daughter cells Most cell division results in daughter cells with identical DNA A special type of division produces nonidentical daughter cells (gametes, or sperm and egg cells) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

8 Cellular Organization of the Genetic Material
All the DNA in a cell constitutes the cell’s genome A genome can consist of a single DNA molecule (as in prokaryotic cells) or a number of DNA molecules (as in eukaryotic cells) DNA molecules in a cell are packaged into chromosomes A typical human cell has 6ft of DNA Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

9 Somatic cells (body cells) have two sets of chromosomes
Different species have different numbers of chromosomes. Ex: Humans = 46 Somatic cells (body cells) have two sets of chromosomes Gametes (reproductive cells: sperm and eggs) have half as many chromosomes as somatic cells Eukaryotic chromosomes consist of chromatin, which is made of DNA and protein Chromatin condenses during cell division to form chromosomes. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

10 Distribution of Chromosomes During Eukaryotic Cell Division
In preparation for cell division, DNA is replicated and the chromosomes condense Each duplicated chromosome has two sister chromatids, which separate during cell division The centromere is the narrow “waist” of the duplicated chromosome, where the two chromatids are most closely attached Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

11 0.5 µm Chromosomes DNA molecules Chromo- some arm Chromosome
Fig. 12-4 0.5 µm Chromosomes DNA molecules Chromo- some arm Chromosome duplication (including DNA synthesis) Centromere Sister chromatids Figure 12.4 Chromosome duplication and distribution during cell division Separation of sister chromatids Centromere Sister chromatids

12 Eukaryotic cell division consists of:
Mitosis, the division of the nucleus Cytokinesis, the division of the cytoplasm Gametes are produced by a variation of cell division called meiosis Meiosis yields nonidentical daughter cells that have only one set of chromosomes, half as many as the parent cell Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

13 Concept 12.2: The mitotic phase alternates with interphase in the cell cycle
In 1882, the German anatomist Walther Flemming developed dyes to observe chromosomes during mitosis and cytokinesis He discovered that the process of cell division happens in distinct phases. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

14 Phases of the Cell Cycle
The cell cycle consists of Interphase (cell growth and copying of chromosomes in preparation for cell division) Mitotic (M) phase (mitosis and cytokinesis) Interphase (about 90% of the cell cycle) can be divided into subphases: G1 phase (“first gap”) S phase (“synthesis”) G2 phase (“second gap”) The cell grows during all three phases, but chromosomes are duplicated only during the S phase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

15 S (DNA synthesis) G1 Cytokinesis G2 Mitosis
Fig. 12-5 INTERPHASE S (DNA synthesis) G1 Cytokinesis G2 Mitosis Figure 12.5 The cell cycle MITOTIC (M) PHASE

16 Mitosis is conventionally divided into five phases:
Prophase Prometaphase Metaphase Anaphase Telophase Cytokinesis is well underway by late telophase For the Cell Biology Video Myosin and Cytokinesis, go to Animation and Video Files. BioFlix: Mitosis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

17 Chromosome, consisting of two sister chromatids
Fig. 12-6 G2 of Interphase Prophase Prometaphase Metaphase Anaphase Telophase and Cytokinesis Centrosomes (with centriole pairs) Chromatin (duplicated) Early mitotic spindle Aster Centromere Fragments of nuclear envelope Nonkinetochore microtubules Metaphase plate Cleavage furrow Nucleolus forming Figure 12.6 The mitotic division of an animal cell Daughter chromosomes Nucleolus Nuclear envelope Plasma membrane Chromosome, consisting of two sister chromatids Kinetochore Kinetochore microtubule Spindle Centrosome at one spindle pole Nuclear envelope forming

18 G2 of Interphase Prophase Prometaphase
Fig. 12-6a Figure 12.6 The mitotic division of an animal cell G2 of Interphase Prophase Prometaphase

19 Chromosome, consisting of two sister chromatids
Fig. 12-6b G2 of Interphase Prophase Prometaphase Centrosomes (with centriole pairs) Chromatin (duplicated) Early mitotic spindle Aster Centromere Fragments of nuclear envelope Nonkinetochore microtubules Figure 12.6 The mitotic division of an animal cell Nucleolus Nuclear envelope Plasma membrane Chromosome, consisting of two sister chromatids Kinetochore Kinetochore microtubule Chromatin is duplicated but not condensed. Centrosomes & nucleous visible. Nuclear envelope present Chromatin condenses into chromosomes with sister chromatids visible. Nucleolus disappears. Mitotic spindle begins to develop Nuclear envelope breaks up. Chromosomes condense more and have kinetochores which attach to spindle fibers

20 Telophase and Cytokinesis
Fig. 12-6c Figure 12.6 The mitotic division of an animal cell Metaphase Anaphase Telophase and Cytokinesis

21 Telophase and Cytokinesis
Fig. 12-6d Metaphase Anaphase Telophase and Cytokinesis Metaphase plate Cleavage furrow Nucleolus forming Figure 12.6 The mitotic division of an animal cell Daughter chromosomes Nuclear envelope forming Spindle Centrosome at one spindle pole Chromosomes line up in center. Centrosomes at opposite poles. Sister chromatids separate and are pulled to opposite ends of the cell. Cell begins to elongate Two daughter nuclei form in the cell. Nuclear envelopes reform and nucleoli reappear. Chromosomes un-condense.

22 The Mitotic Spindle: A Closer Look
The mitotic spindle is an apparatus of microtubules that controls chromosome movement during mitosis During prophase, assembly of spindle microtubules begins in the centrosome, the microtubule organizing center The centrosome replicates, forming two centrosomes that migrate to opposite ends of the cell, as spindle microtubules grow out from them For the Cell Biology Video Spindle Formation During Mitosis, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

23 An aster (a radial array of short microtubules) extends from each centrosome
The spindle includes the centrosomes, the spindle microtubules, and the asters Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

24 During prometaphase, some spindle microtubules attach to the kinetochores of chromosomes and begin to move the chromosomes At metaphase, the chromosomes are all lined up at the metaphase plate, the midway point between the spindle’s two poles Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

25 Fig. 12-7 Aster Centrosome Sister chromatids Microtubules Chromosomes Metaphase plate Kineto- chores Centrosome 1 µm Figure 12.7 The mitotic spindle at metaphase Overlapping nonkinetochore microtubules Kinetochore microtubules 0.5 µm

26 The microtubules shorten by depolymerizing at their kinetochore ends
In anaphase, sister chromatids separate and move along the kinetochore microtubules toward opposite ends of the cell The microtubules shorten by depolymerizing at their kinetochore ends For the Cell Biology Video Microtubules in Anaphase, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

27 EXPERIMENT RESULTS CONCLUSION Kinetochore Spindle pole Mark Chromosome
Fig. 12-8 EXPERIMENT Kinetochore Spindle pole Mark RESULTS Figure 12.8 At which end do kinetochore microtubules shorten during anaphase? CONCLUSION Chromosome movement Kinetochore Motor protein Tubulin subunits Microtubule Chromosome

28 Nonkinetochore microtubules from opposite poles overlap and push against each other, elongating the cell In telophase, genetically identical daughter nuclei form at opposite ends of the cell For the Cell Biology Video Microtubules in Cell Division, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

29 Cytokinesis: A Closer Look
In animal cells, cytokinesis occurs by a process known as cleavage, forming a cleavage furrow In plant cells, a cell plate forms during cytokinesis Animation: Cytokinesis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

30 Figure 12.9 Cytokinesis in animal and plant cells
Vesicles forming cell plate Wall of parent cell 1 µm 100 µm Cleavage furrow Cell plate New cell wall Figure 12.9 Cytokinesis in animal and plant cells Contractile ring of microfilaments Daughter cells Daughter cells (a) Cleavage of an animal cell (SEM) (b) Cell plate formation in a plant cell (TEM)

31 a cell plate at the end, leading to the formation of a new cell wall.
Fig The same mitotic phases can be seen in plant cells. Note the appearance of a cell plate at the end, leading to the formation of a new cell wall. Nucleus Chromatin condensing 10 µm Nucleolus Chromosomes Cell plate Figure Mitosis in a plant cell 1 Prophase 2 Prometaphase 3 Metaphase 4 Anaphase 5 Telophase

32 Binary Fission Prokaryotes (bacteria and archaea) reproduce by a type of cell division called binary fission In binary fission, the chromosome replicates (beginning at the origin of replication), and the two daughter chromosomes actively move apart Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

33 Cell wall Origin of replication Plasma membrane E. coli cell Bacterial
Fig Cell wall Origin of replication Plasma membrane E. coli cell Bacterial chromosome Two copies of origin Figure Bacterial cell division by binary fission

34 Cell wall Origin of replication Plasma membrane E. coli cell Bacterial
Fig Cell wall Origin of replication Plasma membrane E. coli cell Bacterial chromosome Two copies of origin Origin Origin Figure Bacterial cell division by binary fission

35 Cell wall Origin of replication Plasma membrane E. coli cell Bacterial
Fig Cell wall Origin of replication Plasma membrane E. coli cell Bacterial chromosome Two copies of origin Origin Origin Figure Bacterial cell division by binary fission

36 Cell wall Origin of replication Plasma membrane E. coli cell Bacterial
Fig Cell wall Origin of replication Plasma membrane E. coli cell Bacterial chromosome Two copies of origin Origin Origin Figure Bacterial cell division by binary fission

37 The Evolution of Mitosis
Since prokaryotes evolved before eukaryotes, mitosis probably evolved from binary fission Certain protists exhibit types of cell division that seem intermediate between binary fission and mitosis (see diagram) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

38 Origins move to opposite sides and duplicated chromosomes split
Fig Origins move to opposite sides and duplicated chromosomes split Bacterial chromosome (a) Bacteria Chromosomes Chromosomes attach to nuclear envelope; microtubules pass through nucleus Microtubules Intact nuclear envelope (b) Dinoflagellates Kinetochore microtubule Microtubules form a spindle within the nucleus and split the chromosomes. Intact nuclear envelope Figure A hypothetical sequence for the evolution of mitosis (c) Diatoms and yeasts Kinetochore microtubule Nucleus disappears; microtubules form a spindle and separate chromosomes. Fragments of nuclear envelope (d) Most eukaryotes

39 Concept 12.3: The eukaryotic cell cycle is regulated by a molecular control system
The frequency of cell division varies with the type of cell These cell cycle differences result from regulation at the molecular level The cell cycle appears to be driven by specific chemical signals present in the cytoplasm Some evidence for this hypothesis comes from experiments in which cultured mammalian cells at different phases of the cell cycle were fused to form a single cell with two nuclei Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

40 EXPERIMENT RESULTS Experiment 1 Experiment 2 S G1 M G1 S S M M
Fig EXPERIMENT Experiment 1 Experiment 2 S G1 M G1 RESULTS S S M M When a cell in the S phase was fused with a cell in G1, the G1 nucleus immediately entered the S phase—DNA was synthesized. When a cell in the M phase was fused with a cell in G1, the G1 nucleus immediately began mitosis—a spindle formed and chromatin condensed, even though the chromosome had not been duplicated. Figure Do molecular signals in the cytoplasm regulate the cell cycle?

41 The Cell Cycle Control System
The sequential events of the cell cycle are directed by a distinct cell cycle control system, which is similar to a clock The cell cycle control system is regulated by both internal and external controls The clock has specific checkpoints where the cell cycle stops until a go-ahead signal is received Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

42 G1 checkpoint Control system S G1 G2 M M checkpoint G2 checkpoint
Fig G1 checkpoint Control system S G1 G2 M Figure Mechanical analogy for the cell cycle control system M checkpoint G2 checkpoint

43 For many cells, the G1 checkpoint seems to be the most important one
If a cell receives a go-ahead signal at the G1 checkpoint, it will usually complete the S, G2, and M phases and divide If the cell does not receive the go-ahead signal, it will exit the cycle, switching into a nondividing state called the G0 phase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

44 Most cells of the human body are actually in the G0 phase. Example:
Mature nerve and muscle cells

45 G0 G1 G1 G1 checkpoint (b) Cell does not receive a go-ahead signal
Fig G0 G1 checkpoint Figure The G1 checkpoint G1 G1 Cell receives a go-ahead signal (b) Cell does not receive a go-ahead signal

46 The Cell Cycle Clock: Cyclins and Cyclin-Dependent Kinases
Two types of regulatory proteins are involved in cell cycle control: cyclins and cyclin-dependent kinases (Cdks) The activity of cyclins and Cdks fluctuates during the cell cycle MPF (maturation-promoting factor) is a cyclin-Cdk complex that triggers a cell’s passage past the G2 checkpoint into the M phase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

47 Stop and Go Signs: Internal and External Signals at the Checkpoints
An example of an internal signal is that kinetochores not attached to spindle microtubules send a molecular signal that delays anaphase Some external signals are growth factors, proteins released by certain cells that stimulate other cells to divide For example, platelet-derived growth factor (PDGF) stimulates the division of human fibroblast cells in culture Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

48 Scalpels Petri plate Without PDGF cells fail to divide With PDGF
Fig Scalpels Petri plate Without PDGF cells fail to divide Figure The effect of a growth factor on cell division With PDGF cells prolifer- ate Cultured fibroblasts 10 µm

49 Another example of external signals is density-dependent inhibition, in which crowded cells stop dividing Most animal cells also exhibit anchorage dependence, in which they must be attached to a substratum in order to divide Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

50 Density-dependent inhibition
Fig Anchorage dependence Density-dependent inhibition Density-dependent inhibition Figure Density-dependent inhibition and anchorage dependence of cell division 25 µm 25 µm (a) Normal mammalian cells (b) Cancer cells

51 Cancer cells do not respond normally to the body’s control mechanisms
Cancer cells exhibit neither density-dependent inhibition nor anchorage dependence Cancer cells do not respond normally to the body’s control mechanisms Cancer cells may not need growth factors to grow and divide: They may make their own growth factor They may convey a growth factor’s signal without the presence of the growth factor They may have an abnormal cell cycle control system Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

52 A normal cell is converted to a cancerous cell by a process called transformation
Cancer cells form tumors, masses of abnormal cells within otherwise normal tissue If abnormal cells remain at the original site, the lump is called a benign tumor Malignant tumors invade surrounding tissues and can metastasize, exporting cancer cells to other parts of the body, where they may form secondary tumors Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

53 G1 S Cytokinesis Mitosis G2 MITOTIC (M) PHASE Prophase Telophase and
Fig. 12-UN1 INTERPHASE G1 S Cytokinesis Mitosis G2 MITOTIC (M) PHASE Prophase Telophase and Cytokinesis Prometaphase Anaphase Metaphase

54 Fig. 12-UN2

55 Fig. 12-UN3

56 Fig. 12-UN4

57 Fig. 12-UN5

58 Fig. 12-UN6


Download ppt "Chapter 12 The Cell Cycle."

Similar presentations


Ads by Google