Download presentation
Presentation is loading. Please wait.
1
The Mitotic Spindle: A Closer Look
The mitotic spindle is an apparatus of microtubules that controls chromosome movement during mitosis During prophase, assembly of spindle microtubules begins in the centrosome, the microtubule organizing center The centrosome replicates, forming two centrosomes that migrate to opposite ends of the cell, as spindle microtubules grow out from them For the Cell Biology Video Spindle Formation During Mitosis, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
2
An aster (a radial array of short microtubules) extends from each centrosome
The spindle includes the centrosomes, the spindle microtubules, and the asters Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
3
During prometaphase, some spindle microtubules attach to the kinetochores of chromosomes and begin to move the chromosomes At metaphase, the chromosomes are all lined up at the metaphase plate, the midway point between the spindle’s two poles Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
4
Fig. 12-7 Aster Centrosome Sister chromatids Microtubules Chromosomes Metaphase plate Kineto- chores Centrosome 1 µm Figure 12.7 The mitotic spindle at metaphase Overlapping nonkinetochore microtubules Kinetochore microtubules 0.5 µm
5
The microtubules shorten by depolymerizing at their kinetochore ends
In anaphase, sister chromatids separate and move along the kinetochore microtubules toward opposite ends of the cell The microtubules shorten by depolymerizing at their kinetochore ends For the Cell Biology Video Microtubules in Anaphase, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
6
EXPERIMENT RESULTS CONCLUSION Kinetochore Spindle pole Mark Chromosome
Fig. 12-8 EXPERIMENT Kinetochore Spindle pole Mark RESULTS Figure 12.8 At which end do kinetochore microtubules shorten during anaphase? CONCLUSION Chromosome movement Kinetochore Motor protein Tubulin subunits Microtubule Chromosome
7
EXPERIMENT Kinetochore Spindle pole Mark RESULTS Fig. 12-8a
Figure 12.8 At which end do kinetochore microtubules shorten during anaphase? RESULTS
8
Chromosome movement Kinetochore Tubulin Motor Subunits Microtubule
Fig. 12-8b CONCLUSION Chromosome movement Kinetochore Tubulin Subunits Motor protein Microtubule Figure 12.8 At which end do kinetochore microtubules shorten during anaphase? Chromosome
9
Nonkinetochore microtubules from opposite poles overlap and push against each other, elongating the cell In telophase, genetically identical daughter nuclei form at opposite ends of the cell For the Cell Biology Video Microtubules in Cell Division, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
10
Cytokinesis: A Closer Look
In animal cells, cytokinesis occurs by a process known as cleavage, forming a cleavage furrow In plant cells, a cell plate forms during cytokinesis Animation: Cytokinesis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
11
Video: Sea Urchin (Time Lapse)
Video: Animal Mitosis Video: Sea Urchin (Time Lapse) For the Cell Biology Video Nuclear Envelope Formation, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
12
Figure 12.9 Cytokinesis in animal and plant cells
Vesicles forming cell plate Wall of parent cell 1 µm 100 µm Cleavage furrow Cell plate New cell wall Figure 12.9 Cytokinesis in animal and plant cells Contractile ring of microfilaments Daughter cells Daughter cells (a) Cleavage of an animal cell (SEM) (b) Cell plate formation in a plant cell (TEM)
13
(a) Cleavage of an animal cell (SEM)
Fig. 12-9a 100 µm Cleavage furrow Figure 12.9a Cytokinesis in animal and plant cells Contractile ring of microfilaments Daughter cells (a) Cleavage of an animal cell (SEM)
14
(b) Cell plate formation in a plant cell (TEM)
Fig. 12-9b Vesicles forming cell plate Wall of parent cell 1 µm Cell plate New cell wall Figure 12.9b Cytokinesis in animal and plant cells Daughter cells (b) Cell plate formation in a plant cell (TEM)
15
10 µm Fig. 12-10 Nucleus Chromatin condensing Nucleolus Chromosomes
Cell plate Figure Mitosis in a plant cell 1 Prophase 2 Prometaphase 3 Metaphase 4 Anaphase 5 Telophase
16
Nucleus 1 Prophase Chromatin condensing Nucleolus Fig. 12-10a
Figure Mitosis in a plant cell 1 Prophase
17
Chromosomes 2 Prometaphase Fig. 12-10b
Figure Mitosis in a plant cell 2 Prometaphase
18
Fig c Figure Mitosis in a plant cell 3 Metaphase
19
Fig d Figure Mitosis in a plant cell 4 Anaphase
20
10 µm Cell plate 5 Telophase Fig. 12-10e
Figure Mitosis in a plant cell 5 Telophase
21
Binary Fission Prokaryotes (bacteria and archaea) reproduce by a type of cell division called binary fission In binary fission, the chromosome replicates (beginning at the origin of replication), and the two daughter chromosomes actively move apart Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
22
Cell wall Origin of replication Plasma membrane E. coli cell Bacterial
Fig Cell wall Origin of replication Plasma membrane E. coli cell Bacterial chromosome Two copies of origin Figure Bacterial cell division by binary fission
23
Cell wall Origin of replication Plasma membrane E. coli cell Bacterial
Fig Cell wall Origin of replication Plasma membrane E. coli cell Bacterial chromosome Two copies of origin Origin Origin Figure Bacterial cell division by binary fission
24
Cell wall Origin of replication Plasma membrane E. coli cell Bacterial
Fig Cell wall Origin of replication Plasma membrane E. coli cell Bacterial chromosome Two copies of origin Origin Origin Figure Bacterial cell division by binary fission
25
Cell wall Origin of replication Plasma membrane E. coli cell Bacterial
Fig Cell wall Origin of replication Plasma membrane E. coli cell Bacterial chromosome Two copies of origin Origin Origin Figure Bacterial cell division by binary fission
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.