Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ionic compounds containing polyatomic ions

Similar presentations


Presentation on theme: "Ionic compounds containing polyatomic ions"— Presentation transcript:

1 Ionic compounds containing polyatomic ions

2 Review So far, we’ve been dealing only with binary ionic compounds
Binary compounds form between two elements that ionize, experience an electromagnetic attraction, and form an ionic bond For example: Sodium chloride  NaCl Elements: sodium and chlorine Atoms: 1 sodium and 1 chlorine Copper (II) chloride  CuCl2 Elements: copper (II) and chlorine Atoms: 1 copper (II) and 2 chlorine

3 Polyatomic ions What is a polyatomic ion?

4 Polyatomic ions What is a polyatomic ion? “poly” means many

5 Polyatomic ions What is a polyatomic ion? “poly” means many
“atomic” means atom

6 Polyatomic ions What is a polyatomic ion? “poly” means many
“atomic” means atom “polyatomic” means many atoms

7 Polyatomic ions What is a polyatomic ion? “poly” means many
“atomic” means atom “polyatomic” means many atoms “Polyatomic ion” means a many atom ion

8 Polyatomic ions What is a polyatomic ion?
“poly” means many “atomic” means atom “polyatomic” means many atoms “Polyatomic ion” means a many atom ion Polyatomic ions are composed of two or more atoms bonded together by covalent bonds

9 Polyatomic ions What is a polyatomic ion?
“poly” means many/several “atomic” means atom “polyatomic” means several atoms “Polyatomic ion” means a many atom ion Polyatomic ions are composed of two or more atoms bonded together by covalent bonds

10 Polyatomic ions What is a polyatomic ion?
“poly” means many/several “atomic” means atom “polyatomic” means several atoms “Polyatomic ion” means a many atom ion Polyatomic ions are composed of two or more atoms bonded together by covalent bonds, with an uneven number of electrons and protons, creating a net charge

11 Polyatomic ions What is a polyatomic ion?
“poly” means many/several “atomic” means atom “polyatomic” means several atoms “Polyatomic ion” means a many atom ion Polyatomic ions are composed of two or more atoms bonded together by covalent bonds, with an uneven number of electrons and protons, creating a net charge

12 Polyatomic ions What is a polyatomic ion?
“poly” means many/several “atomic” means atom “polyatomic” means several atoms “Polyatomic ion” means a many atom ion Polyatomic ions are composed of two or more atoms bonded together by covalent bonds, with an uneven number of electrons and protons, creating a net charge Polyatomic ions act just like other ions

13 Polyatomic ions What is a polyatomic ion?
“poly” means many/several “atomic” means atom “polyatomic” means several atoms “Polyatomic ion” means a many atom ion Polyatomic ions are composed of two or more atoms bonded together by covalent bonds, with an uneven number of electrons and protons, creating a net charge Polyatomic ions act just like other ions Will form bonds with other ions of the opposite charge

14 Polyatomic ions What is a polyatomic ion?
“poly” means many/several “atomic” means atom “polyatomic” means several atoms “Polyatomic ion” means a many atom ion Polyatomic ions are composed of two or more atoms bonded together by covalent bonds, with an uneven number of electrons and protons, creating a net charge Polyatomic ions act just like other ions Will form bonds with other ions of the opposite charge Ionic compounds with polyatomic ions are neutral, just like binary compounds

15 Polyatomic ions What is a polyatomic ion?
“poly” means many/several “atomic” means atom “polyatomic” means several atoms “Polyatomic ion” means a many atom ion Polyatomic ions are composed of two or more atoms bonded together by covalent bonds, with an uneven number of electrons and protons, creating a net charge Polyatomic ions act just like other ions Will form bonds with other ions of the opposite charge Ionic compounds with polyatomic ions are neutral, just like binary compounds For our purposes, polyatomic ions will never split apart so they can be treated as a single object

16 For example: Nitrate

17 For example: Nitrate NO3-

18 For example: Nitrate NO3-
One nitrate ion is composed of 1 atom of nitrogen and 3 atoms of oxygen bonded together by covalent bonds

19 For example: Nitrate NO3-
One nitrate ion is composed of 1 atom of nitrogen and 3 atoms of oxygen bonded together by covalent bonds Nitrate will always have a 1:3 ratio of nitrogen to oxygen

20 For example: Nitrate NO3-
One nitrate ion is composed of 1 atom of nitrogen and 3 atoms of oxygen bonded together by covalent bonds Nitrate will always have a 1:3 ratio of nitrogen to oxygen The nitrogen and the three oxygens are sharing electrons but they also need to accept 1 extra electron in order to fill their valence shells, hence the charge of -1

21 For example: Nitrate NO3-
One nitrate ion is composed of 1 atom of nitrogen and 3 atoms of oxygen bonded together by covalent bonds Nitrate will always have a 1:3 ratio of nitrogen to oxygen The nitrogen and the three oxygens are sharing electrons but they also need to accept 1 extra electron in order to fill their valence shells, hence the charge of -1 Nitrate can form an ionic compound with a cation, just like any other anion. For example:

22 For example: Nitrate NO3-
One nitrate ion is composed of 1 atom of nitrogen and 3 atoms of oxygen bonded together by covalent bonds Nitrate will always have a 1:3 ratio of nitrogen to oxygen The nitrogen and the three oxygens are sharing electrons but they also need to accept 1 extra electron in order to fill their valence shells, hence the charge of -1 Nitrate can form an ionic compound with a cation, just like any other anion. For example: Sodium nitrate

23 For example: Nitrate NO3-
One nitrate ion is composed of 1 atom of nitrogen and 3 atoms of oxygen bonded together by covalent bonds Nitrate will always have a 1:3 ratio of nitrogen to oxygen The nitrogen and the three oxygens are sharing electrons but they also need to accept 1 extra electron in order to fill their valence shells, hence the charge of -1 Nitrate can form an ionic compound with a cation, just like any other anion. For example: Sodium nitrate  Na+ NO3-

24 For example: Nitrate NO3-
One nitrate ion is composed of 1 atom of nitrogen and 3 atoms of oxygen bonded together by covalent bonds Nitrate will always have a 1:3 ratio of nitrogen to oxygen The nitrogen and the three oxygens are sharing electrons but they also need to accept 1 extra electron in order to fill their valence shells, hence the charge of -1 Nitrate can form an ionic compound with a cation, just like any other anion. For example: Sodium nitrate  Na+ NO3-  NaNO3

25 For example: Nitrate NO3-
One nitrate ion is composed of 1 atom of nitrogen and 3 atoms of oxygen bonded together by covalent bonds Nitrate will always have a 1:3 ratio of nitrogen to oxygen The nitrogen and the three oxygens are sharing electrons but they also need to accept 1 extra electron in order to fill their valence shells, hence the charge of -1 Nitrate can form an ionic compound with a cation, just like any other anion. For example: Sodium nitrate  Na+ NO3-  NaNO3 If sodium nitrate is added to water, the sodium ion will separate from the nitrate ion (like other ionic compounds) but the oxygens and nitrogen in the nitrate ion will remain attached

26 Polyatomic ions You do not need to memorize the polyatomic ions, these will be provided for you in a chart

27 Polyatomic ions You do not need to memorize the polyatomic ions, these will be provided for you in a chart As you can see, there are far more polyatomic anions than cations

28 Polyatomic ions You do not need to memorize the polyatomic ions, these will be provided for you in a chart As you can see, there are far more polyatomic anions than cations Subscripts still refer to the number of atoms while superscripts refer to the overall charge

29 Rules for naming compounds containing polyatomic ions

30 Rules for naming compounds containing polyatomic ions
Cation must be written first

31 Rules for naming compounds containing polyatomic ions
Cation must be written first Anion must be written second

32 Rules for naming compounds containing polyatomic ions
Cation must be written first Anion must be written second 3a. If the anion is monoatomic, change ending to ‘ide’

33 Rules for naming compounds containing polyatomic ions
Cation must be written first Anion must be written second 3a. If the anion is monoatomic, change ending to ‘ide’ 3b. If the anion is polyatomic, leave the ending as is

34 Rules for naming compounds containing polyatomic ions
Cation must be written first Anion must be written second 3a. If the anion is monoatomic, change ending to ‘ide’ 3b. If the anion is polyatomic, leave the ending as is For example: Magnesium and carbonate Potassium and chromate Ammonium and oxygen

35 Rules for naming compounds containing polyatomic ions
Cation must be written first Anion must be written second 3a. If the anion is monoatomic, change ending to ‘ide’ 3b. If the anion is polyatomic, leave the ending as is For example: Magnesium and carbonate magnesium carbonate Potassium and chromate Ammonium and oxygen

36 Rules for naming compounds containing polyatomic ions
Cation must be written first Anion must be written second 3a. If the anion is monoatomic, change ending to ‘ide’ 3b. If the anion is polyatomic, leave the ending as is For example: Magnesium and carbonate magnesium carbonate Potassium and chromate potassium chromate Ammonium and oxygen

37 Rules for naming compounds containing polyatomic ions
Cation must be written first Anion must be written second 3a. If the anion is monoatomic, change ending to ‘ide’ 3b. If the anion is polyatomic, leave the ending as is For example: Magnesium and carbonate magnesium carbonate Potassium and chromate potassium chromate Ammonium and oxygen ammonium oxide

38 Rules for writing the formula of compounds containing polyatomic ions

39 Rules for writing the formula of compounds containing polyatomic ions
1. The cation must always be written first

40 Rules for writing the formula of compounds containing polyatomic ions
1. The cation must always be written first 2. The anion must always be written second

41 Rules for writing the formula of compounds containing polyatomic ions
1. The cation must always be written first 2. The anion must always be written second 3. Use subscripts to indicate how many of each ion you need to balance out the charge.

42 Rules for writing the formula of compounds containing polyatomic ions
1. The cation must always be written first 2. The anion must always be written second 3. Use subscripts to indicate how many of each ion you need to balance out the charge. If you need more than one polyatomic ion, put brackets around the entire ion and the subscript outside the brackets.

43 Rules for writing the formula of compounds containing polyatomic ions
1. The cation must always be written first 2. The anion must always be written second 3. Use subscripts to indicate how many of each ion you need to balance out the charge. If you need more than one polyatomic ion, put brackets around the entire ion and the subscript outside the brackets. For example: ammonium oxide

44 Rules for writing the formula of compounds containing polyatomic ions
1. The cation must always be written first 2. The anion must always be written second 3. Use subscripts to indicate how many of each ion you need to balance out the charge. If you need more than one polyatomic ion, put brackets around the entire ion and the subscript outside the brackets. For example: ammonium oxide NH4+ and O2-

45 Rules for writing the formula of compounds containing polyatomic ions
1. The cation must always be written first 2. The anion must always be written second 3. Use subscripts to indicate how many of each ion you need to balance out the charge. If you need more than one polyatomic ion, put brackets around the entire ion and the subscript outside the brackets. For example: ammonium oxide NH4+ and O2- NH4 O

46 Rules for writing the formula of compounds containing polyatomic ions
1. The cation must always be written first 2. The anion must always be written second 3. Use subscripts to indicate how many of each ion you need to balance out the charge. If you need more than one polyatomic ion, put brackets around the entire ion and the subscript outside the brackets. For example: ammonium oxide NH4+ and O2- In order to create a neutral compound, we need 2 ammoniums and 1 oxygen NH4 O

47 Rules for writing the formula of compounds containing polyatomic ions
1. The cation must always be written first 2. The anion must always be written second 3. Use subscripts to indicate how many of each ion you need to balance out the charge. If you need more than one polyatomic ion, put brackets around the entire ion and the subscript outside the brackets. For example: ammonium oxide NH4+ and O2- In order to create a neutral compound, we need 2 ammoniums and 1 oxygen NH4 2O

48 Rules for writing the formula of compounds containing polyatomic ions
1. The cation must always be written first 2. The anion must always be written second 3. Use subscripts to indicate how many of each ion you need to balance out the charge. If you need more than one polyatomic ion, put brackets around the entire ion and the subscript outside the brackets. For example: ammonium oxide NH4+ and O2- In order to create a neutral compound, we need 2 ammoniums and 1 oxygen NH4 2O Without brackets, this means there is one nitrogen, 8 hydrogens, and 1 oxygen. This is not correct!

49 Rules for writing the formula of compounds containing polyatomic ions
1. The cation must always be written first 2. The anion must always be written second 3. Use subscripts to indicate how many of each ion you need to balance out the charge. If you need more than one polyatomic ion, put brackets around the entire ion and the subscript outside the brackets. For example: ammonium oxide NH4+ and O2- In order to create a neutral compound, we need 2 ammoniums and 1 oxygen (NH4)2O

50 Rules for writing the formula of compounds containing polyatomic ions
1. The cation must always be written first 2. The anion must always be written second 3. Use subscripts to indicate how many of each ion you need to balance out the charge. If you need more than one polyatomic ion, put brackets around the entire ion and the subscript outside the brackets. For example: ammonium oxide NH4+ and O2- In order to create a neutral compound, we need 2 ammoniums and 1 oxygen (NH4)2O The brackets show that the subscript 2 is being applied to the whole polyatomic ion

51 Practice Cation Anion Compound name Compound formula Potassium: K+
Nitrate: NO3- Scandium phosphate LiCH3COO Ammonium: Chlorine: Magnesium hydroxide Be3(PO4)2 Lanthanum: Permanganate: Sulfite: Mo2(CO3)3

52 Practice Cation Anion Compound name Compound formula Potassium: K+
Nitrate: NO3- Potassium nitrate KNO3 Scandium phosphate LiCH3COO Ammonium: Chlorine: Magnesium hydroxide Be3(PO4)2 Lanthanum: Permanganate: Sulfite: Mo2(CO3)3

53 Practice Cation Anion Compound name Compound formula Potassium: K+
Nitrate: NO3- Potassium nitrate KNO3 Scandium: Sc3+ Phosphate: PO43- Scandium phosphate ScPO4 LiCH3COO Ammonium: Chlorine: Magnesium hydroxide Be3(PO4)2 Lanthanum: Permanganate: Sulfite: Mo2(CO3)3

54 Practice Cation Anion Compound name Compound formula Potassium: K+
Nitrate: NO3- Potassium nitrate KNO3 Scandium: Sc3+ Phosphate: PO43- Scandium phosphate ScPO4 Lithium: Li+ Acetate: CH3COO Lithium acetate LiCH3COO Ammonium: Chlorine: Magnesium hydroxide Be3(PO4)2 Lanthanum: Permanganate: Sulfite: Mo2(CO3)3

55 Practice Cation Anion Compound name Compound formula Potassium: K+
Nitrate: NO3- Potassium nitrate KNO3 Scandium: Sc3+ Phosphate: PO43- Scandium phosphate ScPO4 Lithium: Li+ Acetate: CH3COO Lithium acetate LiCH3COO Ammonium: NH4+ Chlorine: Cl- Ammonium chloride NH4Cl Magnesium hydroxide Be3(PO4)2 Lanthanum: Permanganate: Ammonium: Sulfite: Mo2(CO3)3

56 Practice Cation Anion Compound name Compound formula Potassium: K+
Nitrate: NO3- Potassium nitrate KNO3 Scandium: Sc3+ Phosphate: PO43- Scandium phosphate ScPO4 Lithium: Li+ Acetate: CH3COO Lithium acetate LiCH3COO Ammonium: NH4+ Chlorine: Cl- Ammonium chloride NH4Cl Magnesium: Mg2+ Hydroxide: OH- Magnesium hydroxide Mg(OH)2 Be3(PO4)2 Lanthanum: Permanganate: Ammonium: Sulfite: Mo2(CO3)3

57 Practice Cation Anion Compound name Compound formula Potassium: K+
Nitrate: NO3- Potassium nitrate KNO3 Scandium: Sc3+ Phosphate: PO43- Scandium phosphate ScPO4 Lithium: Li+ Acetate: CH3COO Lithium acetate LiCH3COO Ammonium: NH4+ Chlorine: Cl- Ammonium chloride NH4Cl Magnesium: Mg2+ Hydroxide: OH- Magnesium hydroxide Mg(OH)2 Beryllium: Be2+ Beryllium phosphate Be3(PO4)2 Lanthanum: Permanganate: Ammonium: Sulfite: Mo2(CO3)3

58 Practice Cation Anion Compound name Compound formula Potassium: K+
Nitrate: NO3- Potassium nitrate KNO3 Scandium: Sc3+ Phosphate: PO43- Scandium phosphate ScPO4 Lithium: Li+ Acetate: CH3COO Lithium acetate LiCH3COO Ammonium: NH4+ Chlorine: Cl- Ammonium chloride NH4Cl Magnesium: Mg2+ Hydroxide: OH- Magnesium hydroxide Mg(OH)2 Beryllium: Be2+ Beryllium phosphate Be3(PO4)2 Lanthanum: La3+ Permanganate: MnO4- Lanthanum permanganate La(MnO4)3 Ammonium: Sulfite: Mo2(CO3)3

59 Practice Cation Anion Compound name Compound formula Potassium: K+
Nitrate: NO3- Potassium nitrate KNO3 Scandium: Sc3+ Phosphate: PO43- Scandium phosphate ScPO4 Lithium: Li+ Acetate: CH3COO Lithium acetate LiCH3COO Ammonium: NH4+ Chlorine: Cl- Ammonium chloride NH4Cl Magnesium: Mg2+ Hydroxide: OH- Magnesium hydroxide Mg(OH)2 Beryllium: Be2+ Beryllium phosphate Be3(PO4)2 Lanthanum: La3+ Permanganate: MnO4- Lanthanum permanganate La(MnO4)3 Sulfite: SO32- Ammonium sulfite (NH4)2SO3 Mo2(CO3)3

60 Practice Cation Anion Compound name Compound formula Potassium: K+
Nitrate: NO3- Potassium nitrate KNO3 Scandium: Sc3+ Phosphate: PO43- Scandium phosphate ScPO4 Lithium: Li+ Acetate: CH3COO Lithium acetate LiCH3COO Ammonium: NH4+ Chlorine: Cl- Ammonium chloride NH4Cl Magnesium: Mg2+ Hydroxide: OH- Magnesium hydroxide Mg(OH)2 Beryllium: Be2+ Beryllium phosphate Be3(PO4)2 Lanthanum: La3+ Permanganate: MnO4- Lanthanum permanganate La(MnO4)3 Sulfite: SO32- Ammonium sulfite (NH4)2SO3 Molybdenum (III): Mo3+ Carbonate: CO32- Molybdenum (III) carbonate Mo2(CO3)3


Download ppt "Ionic compounds containing polyatomic ions"

Similar presentations


Ads by Google