Download presentation
Presentation is loading. Please wait.
Published byHarjanti Kartawijaya Modified over 6 years ago
1
銀河団における超(非)熱的過程 井上 進 (国立天文台) GLAST Suzaku + other topics GeV 100 keV
ZeV CR TA TeV CANGAROO III PeV n GMRT m eV IceCube
2
2. nonthermal processes in clusters
outline 1. introduction observational status, structure formation shocks, … 2. nonthermal processes in clusters primary electron syn+IC proton-proton p0g, e+- syn+IC, n UHE proton-g e+- syn+IC - VHE g-g e+- syn+IC - structure formation (merger & accretion) shocks SN-driven galactic winds AGN outflows - UHECR protons+nuclei 3. probing cluster/IGM evolution IC g-rays p-p g-rays 4. latest observations radio INTEGRAL HESS
3
observational status: Coma
1. introduction observational status: Coma radio hard X-ray Giovannini+ 93 4.8s detection Fusco-Femiano+ 04 Rossetti & Molendi 04 EUV no detection Bowyer+ 04 Eckert+ 07? gamma-ray no clear evidence yet GeV Reimer+ 03 TeV Aharonian+
4
large scale structure formation (SF) shocks
1. introduction large scale structure formation (SF) shocks formation of galaxies, groups, clusters... = hierarchical, dark matter-driven mergers and accretion → shock formation → gas heating + particle acceleration → nonthermal radiation clusters are forming this very moment! thermal emission shock velocities cosmological hydro simulations by Ryu+ 03
5
shock acceleration - power-law spectrum dN/dE~∝E-2 for strong shock
very efficient up to ~50% of kinetic energy upstream downstream shock front consistent with observations in-situ: interplanetary shocks, … SNRs, radio galaxy hot spots, …
6
shock Mach numbers & particle spectra
u1/u M2 -1 Not all SF shocks are equal. p=1+ =2 (test particle) major merger weak (low M) shock -> soft spectra (p>2), low injection minor merger, accretion Ryu+ 03 strong (high M) shock -> hard spectra (p~2), high injection also Gabici & Blasi 03 SI & Nagashima 05
7
X-ray observations of cluster merger shocks
(bullet cluster) Markevitch+ 02 Clowe+ 06 M~3?
8
cluster accretion shocks
(minor merger) Ryu+ 03 strong (high M) shock -> hard spectra, high efficiency Mach no. accretion power estimate Lacc(M)=fgasGMM/Rs ~1046 erg/s (fgas/0.16) (facc/0.1) (M/1015 MQ)5/3 . difficult to observe in thermal emission!
9
primary electron syn.+IC
2. high energy emission processes in clusters e.g. Hwang 97 Ensslin & Biermann 98 Loeb & Waxman 00 primary electron syn.+IC shock-accelerated e-+gCMB→ e-+g L schematic spectrum Ec (tIC~tshock) Emax (tIC~tacc) accretion E-2 LIC >~ Lsyn if B < 3mG(1+z)2 merger eV keV MeV GeV TeV Eg GeV-TeV tIC<<tshock traces shock promptly keV tIC~<tshock accumulates over cluster history scales directly with electron injection efficiency 5%? 0.1%?
10
proton-proton p0g, secondary pairs, neutrinos
pCR+pICM→ p0, p+- p0→2g p+-→2nm+ne +e+- e+-+B(~mG)→ syn e+-+gCMB→ IC tloss~(nICMkppsppc)-1~100 Gyr (n/10-3 cm-3)-1 tconf ~R2/6D(E)~200 Gyr (R/Mpc)2 (D/1029cm2s-1) (E/GeV)1/3 >>tH e.g. Völk+ 96, Berezinsky+ 97 traces gas (centrally peaked) +cosmic rays accumulated over cluster history (SF, RGs, SNe…) spectra depends on cumulative Mach no. distribution -> steep (p>2) if merger dominant?
11
p-p p0 and secondary pair emission
pCR+pICM→ p0, p+- p0→2g p+- → e+-+B(~mG)→ syn, e+-+gCMB→ IC assume p=2 GLAST radio: constraints on CR (B-dependent) Brunetti+ 07 origin of halo? e.g. Ensslin+ 00, Miniati+ 00 mm-submm: SZ “contamination”? (more interesting?) keV-MeV: detectable contribution? Blasi & Colafrancesco 99
12
p-p neutrinos pCR+pICM→ p0, p+- p+- →2nm, ne Murase, SI+, in prep.
Berezinsky+ 97 Colafrancesco & Blasi 98 pCR+pICM→ p0, p+- p+- →2nm, ne Murase, SI+, in prep. IceCube - promising for near future detectors - probe of PeV CR confinement (difficult with g)
13
UHE proton-induced emission from accretion shocks
SI, Aharonian & Sugiyama 2005 ApJ 628, L9 proton Emax accel. vs CMB losses, lifetime Coma-like cluster M=2x1015 MQ photopair shock radius, velocity, etc. Rs~3.2 Mpc Vs~2200 km/s Bs,eq~ 6 mG lifetime escape Bohm limit shock accel. time accel. Bs=0.1 mG tacc=(20/3) h rgc/Vs2 h~1 (c.f. SNR observations) photopion accel. Bs=1 mG shock lifetime(?) tsl~R/V~2 Gyr < tadiab~6 Gyr Emax~ eV photopair important c.f. Kang, Rachen & Biermann 97
14
emitted flux & detectability
Coma-like, D=100 Mpc p(1019eV) +gCMB→ p+ e+e- (1016eV) e+e-+B(~mG)→keV, e+e-+gCMB→TeV 5s 100h large radiative efficiency from protons - hard (G~-1.5) spectrum + rollover - sensitive to B Suzaku, NeXT Cerenkov
15
secondary g-g pairs from VHE g sources (pair halos)
Aharonian+ 94 Coppi & Aharonian 97 VHE g source Timokhin+ 04 synchrotron hard X AGN, SF shocks… Asano, SI & Aharonian in prep. → 浅野君の講演
16
UHECRs as nuclei from clusters
SI, Sigl, Miniati, Armengaud PRD (astro-ph/ ) UHECRs as nuclei from clusters spectrum anisotropy 100 events>4x1019eV with EGMF fCR~ no EGMF fCR~0.002 1000 events>4x1019eV composition consistent with current data (spectrum <2 sigma) IF Fe/p similar to Galactic CRs clear predictions for Auger, Telescope Array, JEM-EUSO… 1019 eV 1020 eV
17
latest Auger results composition mixed composition at all E
Unger+ arXiv: mixed composition at all E becoming heavier at highest E?
18
X-ray scaling relations
3. probing cluster/IGM evolution via nonthermal emission - gravitational heating (structure formation) - nongravitational effects (radiative cooling, conduction, SN/AGN heating…) entropy vs temp. X-ray scaling relations luminosity vs temperature
19
probing structure formation with gamma-rays: warm-hot IGM (missing baryons)
SI & Nagashima, in prep. (see also astro-ph/ ) WHIM DIOS SF shocks → e-+gCMB→ e-+g GLAST Dave+ 01 baryon condensation into stars -> shock suppression affects contribution to g background, g-ray source statistics g background contribution important constraint on WHIM, complementary to thermal lines
20
nonthermal protons: probe of entropy history?
“entropy” of thermal gas s ∝ ln (T/r2/3) (shock) heating↑ radiative cooling↓ adiabatic pth/r5/3=const. nonthermal protons shock injection↑ diffusive escape↓ (only at high Ep ) adiabatic pCR/r4/3=const. SN heating metal+CR injection AGN heating CR injection only?
21
radio on large scales: Coma
4. latest observations radio on large scales: Coma Kronberg+ arXiv: DRAO+Arecibo 408 MHz 8 deg field Beq~ mG
22
INTEGRAL observations of Coma
XMM 2-5 keV/0.5-2 keV Neumann+ 03 INTEGRAL 18-30 keV Eckert+ 07 arXiv: hard X: >10 keV gas? displaced from XMM hotspot
23
INTEGRAL observations of Coma
Effelsberg 1.4 GHz Deiss+ 97 INTEGRAL 18-30 keV Eckert+ 07 arXiv: hard X: nonthermal? matches radio peak -> Suzaku HXD?
24
INTEGRAL observations of Ophiuchus
Eckert+ A&A submitted 3Msec >20 keV: extended source >7’ spectral excess >6.4 s 2 temp: T2>50 keV power-law: G= ISGRI 20-40 keV strongest evidence to date of cluster hard excess! need confirmation from Suzaku HXD
25
INTEGRAL observations of Ophiuchus: implications
Eckert+ A&A submitted syn IC
26
まとめ: 銀河団における超(非)熱的過程はいろいろありうる (決してあやしくない) 電波・ミリ波・硬X・GeVガンマ・TeVガンマ・
UHE宇宙線・PeVニュートリノまでそれぞれおもしろい 観測は電波以外まだだが、そろそろ見え始めるかも 高エネ現象としておもしろいだけでなく銀河団・ 銀河間物質の進化に対して貴重な新情報も得られるかも いろいろおもろいので皆研究しよう!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.