Presentation is loading. Please wait.

Presentation is loading. Please wait.

Locally Decodable Codes from Lifting

Similar presentations


Presentation on theme: "Locally Decodable Codes from Lifting"β€” Presentation transcript:

1 Locally Decodable Codes from Lifting
Madhu Sudan MSR Joint work with Alan Guo (MIT) and Swastik Kopparty (Rutgers) 3/25/2013 IAS - Lifted Codes

2 Error-Correcting Codes
(Linear) Code πΆβŠ† 𝔽 π‘ž 𝑛 . 𝑛 ≝ block length π‘˜=dim(𝐢)≝ message length 𝑅(𝐢)≝ π‘˜/𝑛: Rate of 𝐢 (want as high as possible) 𝛿 𝐢 ≝ min π‘₯β‰ π‘¦βˆˆπΆ {𝛿 π‘₯,𝑦 ≝ Pr 𝑖 [ π‘₯ 𝑖 β‰  𝑦 𝑖 ]}. Basic Algorithmic Tasks Encoding: map message in 𝔽 π‘ž π‘˜ to codeword. Testing: Decide if π‘₯∈𝐢 Correcting: If π‘₯βˆ‰πΆ, find nearest π‘¦βˆˆπΆ to π‘₯. 3/25/2013 IAS - Lifted Codes

3 Locality in Algorithms
β€œSublinear” time algorithms: Algorithms that run in time o(input), o(output). Assume random access to input Provide random access to output Typically probabilistic; allowed to compute output on approximation to input. LTCs: Codes that have sublinear time testers. Decide if π‘₯∈ 𝐢 probabilistically. Allowed to accept π‘₯ if 𝛿(π‘₯,𝐢) small. LCCs: Codes that have sublinear time correctors. If 𝛿(π‘₯,𝐢) is small, compute 𝑦 𝑖 , for π‘¦βˆˆπΆ closest to π‘₯. 3/25/2013 IAS - Lifted Codes

4 LTCs and LCCs: Formally
𝐢 is a (β„“, πœ–)-LTC if there exists a tester that Makes β„“(𝑛) queries to π‘₯. Accept π‘₯∈𝐢 w.p. 1 Reject π‘₯ w.p. at least πœ–β‹…π›Ώ(π‘₯,𝐢). C is a (β„“,πœ–)-LCC if exists decoder 𝐷 s.t. Given oracle access π‘₯ close to π‘¦βˆˆπΆ, and 𝑖 Decoder makes β„“(𝑛) queries to π‘₯. Decoder 𝐷 π‘₯ (𝑖) usually outputs 𝑦 𝑖 . Pr 𝑖 [ 𝐷 π‘₯ 𝑖 β‰  𝑦 𝑖 ]≀𝛿(π‘₯,𝑦)/πœ– Often: ignore πœ– and focus on β„“ 3/25/2013 IAS - Lifted Codes

5 Example: Multivariate Polynomials
Message = multivariate polynomial; encoding = evaluations everywhere. RM π‘š,𝑑,π‘ž ≝ { 𝑓 𝛼 π›Όβˆˆ 𝔽 π‘ž π‘š | π‘“βˆˆ 𝔽 q π‘₯ 1 ,…, π‘₯ π‘š , deg 𝑓 ≀𝑑} Locality? Restrictions of low-degree polynomials to lines yield low-degree (univariate) polynomials. Random lines sample 𝔽 π‘ž π‘š uniformly (pairwise independently). 3/25/2013 IAS - Lifted Codes

6 LDCs and LTCs from Polynomials
Decoding (π‘‘β‰€π‘ž): Problem: Given π‘“β‰ˆπ‘, π›Όβˆˆ 𝔽 π‘ž π‘š , compute 𝑝 𝛼 . Pick random 𝛽 and consider 𝑓 ​ 𝐿 where L= {𝛼+𝑑 𝛽 | π‘‘βˆˆ 𝔽 π‘ž } is a random line βˆ‹π›Ό. Find univ. poly β„Žβ‰ˆπ‘“ ​ 𝐿 and output β„Ž(𝛼) Testing (π‘‘β‰€π‘ž): Verify deg 𝑓 ​ 𝐿 ≀𝑑. Parameters: 𝑛= π‘ž π‘š ;β„“=π‘ž= 𝑛 1 π‘š ; 𝑅 𝐢 β‰ˆ 1 π‘š π‘š 3/25/2013 IAS - Lifted Codes

7 Decoding Polynomials 𝑑<π‘ž 𝑑>π‘ž
Correct more errors (possibly list-decode) can correct β‰ˆ1 βˆ’ 𝑑/π‘ž fraction errors [STV]. 𝑑>π‘ž Distance of code π›Ώβ‰ˆ π‘ž βˆ’π‘‘/(π‘žβˆ’1) Decode by projecting to β‰ˆ 𝑑 π‘žβˆ’1 dimensions. β€œdecoding dimension”. Locality β‰ˆ1/𝛿. Lots of work to decode from β‰ˆπ›Ώ fraction errors [GKZ,G]. Open when π‘ž=𝑑=3 [Gopalan]. 3/25/2013 IAS - Lifted Codes

8 Testing Polynomials 𝑑β‰ͺπ‘ž: 𝑑>π‘ž:
Even slight advantage on test implies correlation with polynomial.[RS, AS] 𝑑>π‘ž: Testing dimension 𝑑= 𝑑 π‘žβˆ’ π‘ž 𝑝 ; where π‘ž= 𝑝 𝑠 ; Project to t dimensions and test. π‘ž 𝑑 , min πœ– π‘ž , π‘ž βˆ’2𝑑 -LTC. 3/25/2013 IAS - Lifted Codes

9 Testing vs. Decoding dimensions
Why is decoding dimension 𝑑/(π‘žβˆ’1) ? Every function on fewer variables is a degree 𝑑 polynomial. So clearly need at least this many dimensions. Why is testing dimension 𝑑/(π‘žβˆ’π‘ž/𝑝) ? Consider π‘ž= 2 𝑠 and 𝑓= π‘₯ π‘ž 2 𝑦 π‘ž 2 . On line 𝑦 = π‘Žπ‘₯+𝑏, 𝑓= π‘₯ π‘ž π‘Žπ‘₯+𝑏 π‘ž 2 = π‘₯ π‘ž 2 π‘Ž π‘ž 2 π‘₯ π‘ž 𝑏 π‘ž 2 = π‘Ž π‘ž 2 π‘₯ + 𝑏 π‘ž 2 π‘₯ π‘ž 2 . So deg 𝑓 =π‘ž, but 𝑓 has degree ≀ π‘ž 2 on every line! In general if π‘ž= 𝑝 𝑠 then powers of 𝑝 pass through ( … ) Aside: Using more than testing dimension has not paid dividend with one exception [RazSafra] 3/25/2013 IAS - Lifted Codes

10 Other LTCs and LDCs Composition of codes yields better LTCs. LDCs
Reduces β„“(β‹…) (to even 3) without too much loss in 𝑅(𝐢). But till recently, 𝑅 𝐢 ≀ 1 2 LDCs Till 2006, multivariate polynomials almost best known. 2007+ [Yekhanin, Raghavendra, Efremenko] – great improvements for β„“ 𝑛 =𝑂 1 ;𝑛= superpoly π‘˜ . 2010 [KoppartySarafYekhanin] Multiplicity codes get 𝑅 𝐢 β†’1 with β„“ 𝑛 = 𝑛 πœ– For β„“ 𝑛 = log 𝑛; multiv. Polys are still best known. 3/25/2013 IAS - Lifted Codes

11 Today New Locally Correctible and Testable Codes from β€œLifting”.
𝑅 𝐢 β†’1;β„“ 𝑛 = 𝑛 πœ– for arbitrary πœ–>0. First β€œLCCs + LTCs” to achieve this. Only the second β€œLCCs” with this property After Multiplicity codes [KoppartySarafYekhanin] 3/25/2013 IAS - Lifted Codes

12 The codes Alphabet: 𝔽 π‘ž Coordinates: 𝔽 π‘ž π‘š Parameter: degree 𝑑
Message space: 𝑓: 𝔽 π‘ž π‘š β†’ 𝔽 π‘ž deg 𝑓 ​ 𝐿 ≀𝑑, βˆ€ lines 𝐿} Code: Evaluations of message on all of 𝔽 π‘ž π‘š And oh … π‘ž= 2 𝑠 ;𝑑= 1βˆ’πœ– π‘ž;π‘š=𝑂(1) 3/25/2013 IAS - Lifted Codes

13 Recall: Bad news about 𝔽 2 𝑠
Functions that look like degree 𝑑 polynomials on every line β‰  degree 𝑑 π‘š-variate polynomials. But this is good news! Message space includes all degree d polynomials. And has more. So rate is higher! But does this make a quantitative difference? As we will see … YES! Most of the dimension comes from the ``illegitimate’’ functions. 3/25/2013 IAS - Lifted Codes

14 Generalizing: Lifted Codes
Consider π΅βŠ†{ 𝔽 𝑄 𝑑 β†’ 𝔽 π‘ž }. 𝔽 𝑄 extends 𝔽 π‘ž Preferably 𝐡 invariant under affine transformations of 𝔽 𝑄 𝑑 . Lifted code 𝐢≝ Lift_π‘š(𝐡)βŠ† 𝔽 𝑄 π‘š β†’ 𝔽 π‘ž 𝐢= 𝑓 𝑓 ​ 𝐴 ∈𝐡, βˆ€ 𝑑-dim. affine subspaces 𝐴}. Previous example: 𝐡= 𝑓: 𝔽 π‘ž β†’ 𝔽 π‘ž deg 𝑓 ≀𝑑} 3/25/2013 IAS - Lifted Codes

15 Properties of lifted codes
Distance: 𝛿 𝐢 β‰₯𝛿 𝐡 βˆ’ 𝑄 βˆ’π‘‘ + Q βˆ’π‘š β‰ˆπ›Ώ(𝐡) Local Decodability: Same decoding algorithm as for RM codes. 𝐡 is β„“,πœ– -LDC implies 𝐢 is (β„“,Ξ© πœ– )-LDC. Local Testability? 3/25/2013 IAS - Lifted Codes

16 Local Testability of lifted codes
Test: Pick 𝐴 and verify 𝑓 ​ 𝐴 ∈𝐡. β€œSingle-orbit characterization”: 𝑄 𝑑 , 𝑄 βˆ’2𝑑 -LTC [KS] (Better?) analysis for lifted tests: ( 𝑄 𝑑 , πœ– 𝑄 )-LTC [HRS] (extends [BKSSZ,HSS] ) Musings: Analyses not robust (test can’t accept if 𝑓 ​ 𝐴 β‰ˆπ΅.) Still: generalizes almost all known tests … [Main exceptions – [ALMSS,PS,RS,AS] ]. Key question: what is min 𝐾 s.t. 𝑓 ​ 𝐴 1 ,…,𝑓 ​ 𝐴 𝐾 βˆˆπ΅β‡’ there exists an interpolator π‘”βˆˆπΆ s.t. 𝑔 ​ 𝐴 𝑖 =𝑓 ​ 𝐴 𝑖 3/25/2013 IAS - Lifted Codes

17 Returning to (our) lifted codes
Distance οƒΌ Local Decodability οƒΌ Local Testability οƒΌ Rate? No generic analysis; has to be done on case by case basis. Just have to figure out which monomials are in 𝐢. 3/25/2013 IAS - Lifted Codes

18 Rate of bivariate Lifted RS codes
𝐡= π‘“βˆˆ 𝔽 π‘ž π‘₯ deg 𝑓 ≀𝑑= 1βˆ’πœ– π‘ž} ; π‘ž= 2 𝑠 Will set πœ–= 2 βˆ’π‘ and let π‘β†’βˆž. 𝐢= 𝑓: 𝔽 π‘ž π‘₯,𝑦 𝑓 ​ 𝑦=π‘Žπ‘₯+𝑏 ∈𝐡, βˆ€π‘Ž, 𝑏} When is π‘₯ 𝑖 𝑦 𝑗 ∈𝐢? Clearly if 𝑖+𝑗≀𝑑; But that is at most π‘ž pairs. Want β‰ˆ π‘ž more such pairs. When is every term of π‘₯ 𝑖 π‘Žπ‘₯+𝑏 𝑗 mod π‘₯ π‘ž βˆ’π‘₯ of degree at most 𝑑? 3/25/2013 IAS - Lifted Codes

19 Lucas’s theorem & Rate Notation: π‘Ÿ ≀ 2 𝑗, if π‘Ÿ= 𝑖 π‘Ÿ 𝑖 2 𝑖 and 𝑗= 𝑖 𝑗 𝑖 2 𝑖 ( π‘Ÿ 𝑖 , 𝑗 𝑖 ∈ 0,1 ) and π‘Ÿ 𝑖 ≀ 𝑗 𝑖 for all 𝑖. Lucas’s Theorem: π‘₯ π‘Ÿ ∈supp π‘Žπ‘₯+𝑏 𝑗 iff π‘Ÿ ≀ 2 𝑗. β‡’supp π‘₯ 𝑖 π‘Žπ‘₯+𝑏 𝑗 βˆ‹ π‘₯ 𝑖+π‘Ÿ iff π‘Ÿ ≀ 2 𝑗 So given 𝑖,𝑗;βˆƒπ‘Ÿ ≀ 2 𝑗 s.t. 𝑖+π‘Ÿ mod β€² π‘ž >𝑑? 3/25/2013 IAS - Lifted Codes

20 Binary addition etc. 𝑖 𝑗 𝑒=𝑖+π‘Ÿ msb lsb
𝑖 π‘˜βˆ’1 =0 & 𝑖 π‘˜ =0 & j π‘˜βˆ’1 =0 & 𝑗 π‘˜ =0 β‡’ 𝑒 π‘˜ =0 𝑗 𝑐 𝑒=𝑖+π‘Ÿ 𝑒 π‘˜ =0⇒𝑒≀ 𝑑 msb lsb Pr 𝑖,𝑗 [𝑖 π‘˜βˆ’1 … 𝑗 π‘˜ β‰ 0000]≀15/16 Pr 𝑖,𝑗 [𝑖+π‘Ÿ mod β€² π‘ž >𝑑]≀ 𝑐 2 β†’0 as π‘β†’βˆž 3/25/2013 IAS - Lifted Codes

21 Other lifted codes Best LCC with O(1) locality.
𝐡= 𝑓: 𝔽 2 𝑠 β†’ 𝔽 2 π‘Ž 𝑓(π‘Ž) =0}; 𝑠= log 2 β„“ =O(1) 𝐢= Lift π‘š (𝐡); 𝑛= 2 π‘ π‘š ;β„“-LCC; dim 𝐢 = log 𝑛 β„“ Alternate codes for BGHMRS construction: 𝐡= 𝑓: 𝔽 4 π‘šβˆ’ log 1/πœ– β†’ 𝔽 2 π‘Ž 𝑓(π‘Ž) =0} 𝐢= Lift π‘š 𝐡 ; β„“=πœ–π‘›; dim 𝐢 =𝑛 βˆ’ polylog 𝑛 3/25/2013 IAS - Lifted Codes

22 Nikodym Sets π‘βŠ† 𝔽 π‘ž π‘š is a Nikodym set if it almost contains a line through every point: βˆ€π‘Žβˆˆ 𝔽 π‘ž π‘š , βˆƒ π‘βˆˆ 𝔽 π‘ž π‘š s.t. π‘Ž+𝑑𝑏 π‘‘βˆˆ 𝔽 π‘ž }βŠ†π‘βˆͺ{π‘Ž} Similar to Kakeya Set (which contain line in every direction). βˆ€ π‘βˆˆ 𝔽 π‘ž π‘š , βˆƒ π‘Žβˆˆ 𝔽 π‘ž π‘š s.t. π‘Ž+𝑑𝑏 π‘‘βˆˆ 𝔽 π‘ž }βŠ†πΎ [Dvir], [DKSS]: 𝐾 , |𝑁|β‰₯ π‘ž 2 π‘š 3/25/2013 IAS - Lifted Codes

23 Proof (β€œPolynomial Method”)
Find low-degree poly 𝑃≠0 s.t. 𝑃 𝑏 =0, βˆ€ π‘βˆˆ 𝑁. deg 𝑃 <π‘žβˆ’1 provided 𝑁 < π‘š+π‘žβˆ’2 π‘š . But now 𝑃 ​ 𝐿 π‘Ž =0, βˆ€ Nikodym lines 𝐿 π‘Ž ⇒𝑃 π‘Ž =0 βˆ€π‘Ž, contradicting 𝑃≠0. Conclude 𝑁 β‰₯ π‘š+π‘žβˆ’2 π‘š β‰ˆ π‘ž π‘š π‘š! . Multiplicities, more work, yields 𝑁 β‰₯ π‘ž 2 π‘š . But what do we really need from 𝑃? 𝑃 comes from a large dimensional vector space. 𝑃 ​ 𝐿 is low-degree! Using 𝑃 from lifted code yields 𝑁 β‰₯ 1βˆ’π‘œ 1 π‘ž π‘š (provided π‘ž of small characteristic). 3/25/2013 IAS - Lifted Codes

24 Conclusions Lifted codes seem to extend β€œlow-degree polynomials” nicely: Most locality features remain same. Rest are open problems. Lead to new codes. More generally: Affine-invariant codes worth exploring. Can we improve on multiv. poly in polylog locality regime? 3/25/2013 IAS - Lifted Codes

25 Thank You 3/25/2013 IAS - Lifted Codes


Download ppt "Locally Decodable Codes from Lifting"

Similar presentations


Ads by Google