Download presentation
Presentation is loading. Please wait.
1
Model systems with interaction
Ising spin chain (with open boundary conditions) Classical variable π π =Β±1 J π π π π+1 π πβ1 π»=β 1 2 π,π π½ ππ π π π π π½ ππ = π½ πππ π,π ππππππ π‘ ππππβππππ 0 ππ‘βπππ€ππ π π»=βπ½ π 1 π 2 + π 2 π 3 + β¦+ π πβ1 π π π= πΌ π βπ½ πΈ πΌ = π 1 , π 2 , β¦, π π π π½π½ π 1 π 2 + π 2 π 3 + β¦+ π πβ1 π π
2
π= π 1 , π 2 , β¦, π π π π½π½ π 1 π 2 + π 2 π 3 + β¦+ π πβ1 π π
= π 2 , β¦, π π π π½π½ π 2 + π 2 π 3 + β¦+ π πβ1 π π + π π½π½ β π 2 + π 2 π 3 + β¦+ π πβ1 π π = π 3 , β¦, π π π π½π½ 1+ π 3 + β¦+ π πβ1 π π + π π½π½ β1+ π 3 + β¦+ π πβ1 π π + π π½π½ β1β π 3 + β¦+ π πβ1 π π + π π½π½ 1β π 3 + β¦+ π πβ1 π π = π 3 , β¦, π π (π π½π½ + π βπ½π½ )( π π½π½ π 3 + β¦+ π πβ1 π π + π π½π½ βπ 3 + β¦+ π πβ1 π π ) = 2cosh π½π½ π 3 , β¦, π π ( π π½π½ π 3 + π 3 π 4 β¦+ π πβ1 π π + π π½π½ βπ 3 +π 3 π 4 β¦+ π πβ1 π π ) = 2cosh π½π½ π 4 , β¦, π π ( π π½π½ 1+ π 4 β¦+ π πβ1 π π + π π½π½ β1+ π 4 β¦+ π πβ1 π π π π½π½ β1β π 4 β¦+ π πβ1 π π + π π½π½ 1β π 4 β¦+ π πβ1 π π ) = 2cosh π½π½ π 4 , β¦, π π (π π½π½ + π βπ½π½ )( π π½π½ π 4 + β¦+ π πβ1 π π + π π½π½ βπ 4 + β¦+ π πβ1 π π ) = 2cosh π½π½ π 4 , β¦, π π ( π π½π½ π 4 + β¦+ π πβ1 π π + π π½π½ βπ 4 + β¦+ π πβ1 π π )
3
πΊ=β π π΅ π ln 2 β π π΅ π πβ1 ln 2cosh π½π½
π= 2cosh π½π½ πβ2 π π π π½π½ π π + π βπ½π½ π π = 2cosh π½π½ πβ2 π π 2 cosh π½π½ π π = 2cosh π½π½ πβ2 π π 2 cosh π½π½ π=2 2cosh π½π½ πβ1 πΊ=β π π΅ π ln 2 β π π΅ π πβ1 ln 2cosh π½π½ π= πΊ π πββ =β π π΅ π ln 2cosh π½π½ Entropy per spin: s= π π =β ππ ππ = π π΅ ln 2cosh π½π½ β π π΅ π 2 sinh π½π½ 2cosh π½π½ π½ π π΅ π 2 ln 2 π π π΅ π π½ π π΅ =1 πΎ For s= π π΅ ln 2cosh π½π½ β π½ π tanh π½π½ T->β , π½β0 s= π π΅ ln 2 1 s βπ π΅ ln e π½π½ β π½ π =0 T->0 , π½ββ 2
4
Internal energy per spin:
We recall from thermodynamics π=πΊ+ππ+ π 0 πππ» which reduces for H=0 to π=πΊ+ππ π’= π π =π+ππ =β π π΅ π ln 2cosh π½π½ + π π΅ π ln 2cosh π½π½ β J tanh π½π½ π π’ π½ π π΅ =1 πΎ For π’=β J tanh π½π½ T->β , π½β0 π’=0 1 T->0 , π½ββ π’=-J 2 π π Heat capacity per spin: π= ππ’ ππ =β J π ππ tanh π½π½ = k B π½ π π΅ π cosh π½ π π΅ π 2
5
Spin-spin correlation function
πΊ π πΊ π+π measures the statistical correlation between the spins (random variables) at position a and a+b a a+b Intuitive properties πΊ π πΊ π =1 No interaction between spins (spins are uncorrelated) πΊ π πΊ π+π = πΊ π πΊ π+π =0 for πβ 0 Interaction creates finite T-dependent correlation on characteristic length scale π(π) Letβs calculate πΊ π πΊ π+π for chain of nearest neighbor interacting Ising spins πΊ π πΊ π+π = π 1 , π 2 , β¦, π π π π π π+π π π½π½ π 1 π 2 + π 2 π 3 + β¦+ π πβ1 π π π 1 , π 2 , β¦, π π π π½π½ π 1 π 2 + π 2 π 3 + β¦+ π πβ1 π π
6
To calculate πΊ π πΊ π+π we use a few tricks
Letβs switch from π―=βπ± π=π π΅βπ πΊ π πΊ π+π to the more general Hamiltonian π―=β π=π π΅βπ π± π πΊ π πΊ π+π The partition function for the generalized Hamiltonian reads π=2 π=1 πβ1 2cosh π½ π½ π Letβs first calculate the correlation function πΊ π πΊ π+π S a S a+1 = 1 π π 1 , π 2 , β¦, π π π π π π+1 π π½ π=1 πβ1 π½ π π π π π+1 = 1 π 1 π½ π π π½ π π 1 , π 2 , β¦, π π π π½ π=1 πβ1 π½ π π π π π+1 = 1 π 1 π½ ππ π π½ π = π½ sinh π½ π½ π cosh π½ π½ π π½ =tanhπ½ π½ π For the special case π½ π =π½ we obtain S a S a+1 =tanhπ½π½
7
Letβs now calculate the correlation function πΊ π πΊ π+π
Per definition S a S a+2 = 1 π π 1 , π 2 , β¦, π π π π π π+2 π π½ π=1 πβ1 π½ π π π π π+1 We use the trick π π+1 π π+1 = π π+1 2 =1 π π π π+2 = π π βπβπ π+2 = π π π π+1 π π+1 π π+2 S a S a+2 = 1 π π 1 , π 2 , β¦, π π π π π π+1 π π+1 π π+2 π π½ π=1 πβ1 π½ π π π π π+1 = 1 π 1 π½ 2 π 2 π π π½ π π π½ π+1 =tanhπ½ π½ π tanhπ½ π½ π+1 For the special case π½ π = π½ π+1 =π½ T->0 S a S a+π π we obtain S a S a+2 = tanh π½π½ 2 S a S a+π = tanh π½π½ π
8
Correlation length The last figure suggests:
Correlation between spins decays with increasing separation of the spin on a characteristic T-dependent length scale we will call π(π») =π β π π π S a S a+π = tanh π½π½ π =π ln tanh π½π½ π =π π ln tanh π½π½ tanh(x) π π = 1 ln tanh π½π½ Note that tanh π½π½ <1 and thus ln tanh π½π½<0 Discussion T->β , π½β0 tanh π½π½ β0 ln tanh π½π½ ββ π πββ β0 1 tanh π½π½= π π½π½ β π βπ½π½ π π½π½ + π βπ½π½ = π π½π½ β π βπ½π½ π π½π½ 1+ π β2π½π½ = 1β π β2π½π½ 1+ π β2π½π½ T->0 , π½ββ 2 β 1β π β2π½π½ 1+ π β2π½π½ β 1β π β2π½π½ 2 β1β 2π β2π½π½ π πβ0 β 1 2 π 2π½π½ ln tanh π½π½β ln (1β 2π β2π½π½ )β 2π β2π½π½
9
At Tc fluctuations on all length scales including
Significance of π(π») is more transparent for higher spatial dimensions (2d, 3d) where π(π») diverges at finite temperature Tc At Tc fluctuations on all length scales including length scale of the entire sample π π»= π» πͺ ββ Wπ’ππ‘ π π» also the susceptibility π π» diverges because there is a general relation between π π» and the sum of spin-spin correlation functions S π’ S π£ π π = lim π»β0 ππ ππ» β lim π»β0 π ππ» π π π β lim ββ0 π πβ π π 1 , π 2 β¦, π π π π π π½π½ π π π π π π+1 + π½β π π π π π 1 , π 2 β¦, π π π π½π½ π π π π π π+1 +π½β π π π π = lim ββ0 π π 1 , π 2 β¦, π π π π π½ π π π π π π½π½ π π π π π π+1 +π½β π π π π πβ π 1 , π 2 β¦, π π π½ π π π π π π½π½ π π π π π π+1 +π½β π π π π π 1 , π 2 β¦, π π π π π π½π½ π π π π π π+1 + π½β π π π π π 2 = lim ββ0 π π 1 , π 2 β¦, π π π π π½ π π π π π π½π½ π π π π π π+1 +π½β π π π π π β π 1 , π 2 β¦, π π π½ π π π π π π½π½ π π π π π π+1 +π½β π π π π π 1 , π 2 β¦, π π π π π π½π½ π π π π π π+1 + π½β π π π π π 2
10
with const= π π π π π΅ 2 π 0 π½(π½+1) 3
= lim ββ0 π π 1 , π 2 β¦, π π π π π½ π π π π π π½π½ π π π π π π+1 +π½β π π π π π β π 1 , π 2 β¦, π π π½ π π π π π π½π½ π π π π π π+1 +π½β π π π π π 1 , π 2 β¦, π π π π π π½π½ π π π π π π+1 + π½β π π π π π β π β π π π π β π for h->0 π π ->0 for h->0 No long range order for the Ising chain π π =const π½ π π,π π π π π with const= π π π π π΅ 2 π 0 π½(π½+1) 3 Letβs see how this expression reproduces paramagnetic susceptibility in the limit J=0 1 π π,π π π π π = 1 π π=π π π π π π π πβ π π π π π =1+ 1 N π 2 π =1 π π π π π+π The 2 originates from the fact that terms such as appear twice in the a,i-double sum π 1 π 2 = π 2 π 1 =1+2 π=1 π tanh π½π½ π
11
Letβs have a look to the limit of a long (relative to the correlation length) Ising chain
πββ 1+2 π=1 β tanh π½π½ π =1β2+2 π=0 β tanh π½π½ π 1 π π,π π π π π β = β tanh π½π½ β1 =1+2 tanh π½π½ 1β tanh π½π½ =1+2 π π½π½ β π βπ½π½ π π½π½ + π βπ½π½ 1β π π½π½ β π βπ½π½ π π½π½ + π βπ½π½ =1+2 π π½π½ β π βπ½π½ π π½π½ + π βπ½π½ β π π½π½ + π βπ½π½ =1+ π 2π½π½ β1 π π =const π½ π π,π π π π π =const π½ π π 2π½π½ π π β 1 π For J=0 this indeed reduced to the Curie-law of interaction free paramagnets
12
For JοΉ0 it is interesting to discuss the cases of ferro and antiferromagnetic coupling
π π T J πβ π 2π½ π π΅ π π J<0 antiferromagnetic coupling π π T J=-1/2 J=-1 πβ π β 2 π½ π π΅ π π
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.