Download presentation
Presentation is loading. Please wait.
Published byAllyson Skinner Modified over 6 years ago
1
The Optimization of the Flapping Wings for a Micro Air Vehicle (MAV)
29 November, 2018 Hugo Peters
2
Micro Air Vehicles Applications Appearance Espionage Observation
Entertainment University of Notre Dame DelFly Micro 29 November, 2018
3
Micro Air Vehicles (cont.)
Atalanta project - Flapping wings - Biologically inspired Resonating ring structure Flapping wings - Hovering - Scaling down - Robustness Flapping wings: Hovering: fixed wings need a speed to stay aloft. Insects are able to hover Scaling down: there are very small insects using flapping wings. Energy scales favorable with scaling down by using flapping wings. Robustness: It is not a problem if this mav hits the wall a few times other MAVs would be broken 29 November, 2018
4
Main question Wing performance Main question: Expectations
For which wing planform and for what wing kinematics is the overall performance of a flapping wing optimal? 29 November, 2018
5
Contents Introduction Model building Wing performance
Wing optimization Recommendations Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
6
Kinematics Hovering flying state Horizontal stroke plane
Symmetric flapping behaviour Downstroke Upstroke Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
7
Kinematics (cont.) Main sweeping motion Heaving motion Pitching motion
Downstroke Main sweeping motion phi: Heaving motion theta: Pitching motion eta: m z Á ( t ) = m s i n 2 f Á Upstroke y x ( t ) = 9 eta_m erin tekenetn Sinus figuren toevoegen om de phase difference duidelijk te maken Simulatie movie later ( t ) = m s i n 2 f + Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
8
Aerodynamics Aerodynamics loads Aerodynamic complex phenomena
Requirements aerodynamic model: - Include complex phenomena - Limited computational time Movies automathisch laten starten en loopen zodat ze doorgaan Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
9
Aerodynamic model Semi-empirical quasi-steady model Limitation
Loads on geometric centre Two-dimensional Limitation Based on empirical data Insect related Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
10
Model variables 2 6 : 3 H z Kinematics Á ( t ) = s i n 2 ¼ f µ ( t ) =
- Sweeping angle: - Heaving angle: Pitching angle: Á ( t ) = m s i n 2 f ( t ) = ( t ) = m s i n 2 f + 2 5 m 8 9 Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
11
Model variables (cont.)
= : 5 1 9 m Planform - Chord length r c ( r ) : 1 c ( r ) 2 5 29 November, 2018
12
Wing strip performance
1 F l i f t Average lift force Required power: Ratio between average lift force and required power Performance total wing: summation r 5 5 1 F d r a g ; 5 P i = M _ Á P 5 = ( F d r a g ; ) _ Á _ Á Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
13
Flapping wing 29 November, 2018
14
Performance visualization
[ ] [ ] Fifth strip: [ ] Ratio, Required power, Average lift force, F l i f t ; 5 = P P 5 F l i f t ; 5 Meer stripjes laten zien Een pagina toevoegen met alleen maar resultaten zodat mensen de verschillen tussen de stripjes kunnen zien. Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
15
29 November, 2018
16
Conclusions performance
Influence first strips is small Not sensitive w.r.t. variables Maximum average lift force: - Pitching amplitude decreases towards the wingtip - Chord length is maximum Required power is minimized for high pitching amplitude Best ratio: pitching amplitude increases towards the wingtip [ ] Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
17
Wing strip optimization
m P : Optimization problem: Lagrange formulation: Minimize P : F l i f t ; but: F l i f t ; c ( r ) Heel snel doorheen gaan L ( x ; ) = P + F l i f t Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
18
Stationary point f : = First order information = @ L = = @ P ´ ¡ ¹ F =
x = First order information d f x = @ L = = @ P m F l i f t d f x = = @ P c ( r ) F l i f t x Not sufficient waarschijnlijk weg. Hierna moet ik presenteren wat de resultaten van de verschillende optimalizaties zijn bij beide formuleringen Het blijft dat wanneer beide formuleringen gebruikt worden er verschillende planforms gevonden worden terwijl de performances hetzelfde zijn Dit zorgt ervoor dat er gekeken moet worden naar second order informatie wat er nu eigenlijk aan de hand is = F l i f t ; Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
19
Minimize required power
Optimization: Minimize P : but: F l i f t ; 29 November, 2018
20
Maximize average lift force
Optimization: Maximize F l i f t but: P 29 November, 2018
21
Comparison First formulation Second formulation - Minimize power
Maximize lift 29 November, 2018
22
29 November, 2018
23
Constrained minimum f : ´ < Second order information
2 f x < Second order information Nature of stationary points - Local minimum: Valley: P : d 2 f x = @ 2 L x F l i f t ; d 2 f x > c ( r ) x Consequence: Possible deviation around optima Laatse plaatje misschien verwijderen Het is dus helemaal niet gek dat er meerdere optimale punten gevonden worden omdat we te maken hebben met een valley 1 ; 2 > 1 = ; 2 > Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
24
Optimization results Deze slide kan dus naar voren, voor de second order information Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
25
Control case Given planform Optimization: Comparison: F P · ¢ : 1 W !
(a) – (b): (b) – (c): Maximize F l i f t but: P Misschien dit veel korter doen als ik in tijdnood kom! Dat kan zeker voorkomen gezien het huidige programma Design variables: Pitching amplitude of each strip : 1 W ! 2 m N : 1 W ! 4 6 m N Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
26
Optimization case (cont.)
Pitching amplitude Monotonicity Deze pagina kan misschien helemaal weg als er tijdnood is Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
27
Conclusions wing optimization
High differences in performance Optimization problem is non-convex - Different starting points Performance of different planforms might be identical Pitching amplitude: - Low lift requirements: increase towards wing tip - High lift requirements: decrease towards wing tip Adjustment of pitching amplitude to control MAV f : x Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
28
Recommendations Experimental setup More advanced modelling technique
- Validate current model - Test influence minor structural details - Apply optimization strategy based on experiments More advanced modelling technique - Fully unsteady aerodynamic model - Mechanical FEM model - Higher computational costs Model building – Wing performance – Wing optimization – Recommendations 29 November, 2018
29
“Aerodynamically, the bumble bee shouldn't be able
to fly, but the bumble bee doesn't know it so it goes on flying anyway.” (Mary Kay Ash) 29 November, 2018
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.