Download presentation
Presentation is loading. Please wait.
1
Discrete Math & Fixed points
CS 350 โ Fall 2018 gilray.org/classes/fall2018/cs350/
2
๐ด={1,2,3}
3
๐ดร๐ด= {(1,1),(1,2),(1,3), (2,1),(2,2),(2,3), (3,1),(3,2),(3,3)}
4
โรโ= {(0,0),(0,1),(0,2),(0,3),โฏ (1,0),(1,1),(1,2),(1,3),โฏ
(2,0),(2,1),(2,2),(3,3),โฏ (3,0),(3,1),(3,2),(3,3), โฑ โฎ
5
๐
โโรโ
6
โ๐ฅโ๐ด.Even(๐ฅ) โ๐ฅโ๐ด.Even(๐ฅ) ๐ด={1,2,3} Even(๐ฅ) = ฮ ๐ฅโก0(mod2)
Propositions are statements that are True or False. E.g., ๐ด={1,2,3} Predicates are functions that yield True or False. E.g., Even(๐ฅ) = ฮ ๐ฅโก0(mod2) Quantifiers lift a proposition over elements to a proposition over sets. E.g. โ๐ฅโ๐ด.Even(๐ฅ) โ๐ฅโ๐ด.Even(๐ฅ)
7
Applies to sets as well:
De Morganโs Laws ๐โจ๐โบยฌ(ยฌ๐โงยฌ๐) ๐โง๐โบยฌ(ยฌ๐โจยฌ๐) Applies to sets as well: ๐ดโฉ๐ตโบ ( ๐ด โช ๐ต )
8
Or, using set-builder notation:
๐
={(0,1),(1,2),(2,3),(3,4),โฆ} Or, using set-builder notation: ๐
={(๐,๐+1)|๐โโ}
9
Or, as a graph: 1 2 3 4 5
10
|๐ด|=3 |๐ดร๐ด|=|๐ด|ร|๐ด|=9 |๐ซ(๐ด)|=| 2 ๐ด |= 2 |๐ด| =8
11
Counting Problems
12
๐ซ(๐ด)= 2 ๐ด = {ร,{1},{2},{3}, {1,2},{1,3},{2,3},{1,2,3}}
13
๐ซ(๐ด)= 2 ๐ด = โHasseโ diagram {1,2,3} {1,2} {1,3} {2,3} {1} {2} {3} ร
14
(โ)โ๐ซ(๐ด)ร๐ซ(๐ด)
15
๐ฅ๐
๐ฆโน๐ฆ๐
๐ฅ ๐ฅ๐
๐ฆโง๐ฆ๐
๐ฅโน๐ฅ=๐ฆ ๐ฅ๐
๐ฆโง๐ฆ๐
๐งโน๐ฅ๐
๐ง โ๐ฅ.๐ฅ๐
๐ฅ Reflexivity of R:
Symmetry of R: ๐ฅ๐
๐ฆโน๐ฆ๐
๐ฅ Antisymmetry of R: ๐ฅ๐
๐ฆโง๐ฆ๐
๐ฅโน๐ฅ=๐ฆ Transitivity of R: ๐ฅ๐
๐ฆโง๐ฆ๐
๐งโน๐ฅ๐
๐ง
16
โ โ (โ,โค) (๐ซ(โ),โ) โ๐ฅ,๐ฆ.๐ฅ๐
๐ฆโจ๐ฆ๐
๐ฅ
Partial orders are reflexive, antisymmetric, and transitive. If , then the order is total. If it is not antisymmetric, then itโs a preorder. If it is irreflexive, then it is a strict partial order. A set S and a partial order ( ) form a poset (S, ) togetherโa partially ordered set. For example: or A equivalence relation is reflexive, symmetric, and transitiveโhas equivalence classes. What does itโs graph look like? โ๐ฅ,๐ฆ.๐ฅ๐
๐ฆโจ๐ฆ๐
๐ฅ โ โ (โ,โค) (๐ซ(โ),โ)
17
A join , also called a least upper bound, is the unique element of a poset no less than than x and y, but strictly less than all other elements no less than either x or y. A meet , also called a greatest lower bound, is the unique element of a poset no greater than than x and y, but strictly greater than all other elements no greater than either x or y. A lattice is a partially ordered set such that, for all x and y, both a meet and a join exist for x and y. (๐ฅโ๐ฆ) ๐ฅโ(๐ฅโ๐ฆ)โง๐ฆโ(๐ฅโ๐ฆ)โงโ๐ง.(๐ฅโ๐งโง๐ฆโ๐งโง๐งโ(๐ฅโ๐ฆ)โน๐ง=(๐ฅโ๐ฆ) (๐ฅโ๐ฆ) ๐ฅโ(๐ฅโ๐ฆ)โง๐ฆโ(๐ฅโ๐ฆ)โงโ๐ง.(๐ฅโ๐งโง๐ฆโ๐งโง๐งโ(๐ฅโ๐ฆ)โน๐ง=(๐ฅโ๐ฆ)
18
(1.0m, 100kg) (0.5m, 100kg) (1.0m, 50kg) (1.0m, 10kg) (0.5m, 50kg) (0.5m, 10kg)
19
โ๐ฅ.โ๐ฆ.(๐ฅ,๐ฆ)โ๐น โ๐ฆ.โ๐ฅ.(๐ฅ,๐ฆ)โ๐น โ๐ฅ,๐ฆ.๐น(๐ฅ)=๐น(๐ฆ)โน๐ฅ=๐ฆ
F is a function: โ๐ฅ,๐ฆ,๐ง.(๐ฅ,๐ฆ)โ๐นโง(๐ฅ,๐ง)โ๐นโน๐ฆ=๐ง F is a total function: โ๐ฅ.โ๐ฆ.(๐ฅ,๐ฆ)โ๐น F is injective/1-1: โ๐ฅ,๐ฆ.๐น(๐ฅ)=๐น(๐ฆ)โน๐ฅ=๐ฆ F is surjective/onto: โ๐ฆ.โ๐ฅ.(๐ฅ,๐ฆ)โ๐น
20
sets, then they must have the same cardinality.
๐น:โโโ ๐น(๐)=๐+1 1 2 3 4 5 6 7 8 9 10 11 If a bijective function (injective, surjective) exists between two finite sets, then they must have the same cardinality.
21
n f(n) โฆ โฆ โฆ โฆ โฆ โฆ โฆ โฆ โฆ
22
n f(n) โฆ โฆ โฆ โฆ โฆ โฆ โฆ โฆ โฆ d โฆ
23
n f(n) โฆ โฆ โฆ โฆ โฆ โฆ โฆ โฆ โฆ d โฆ dโ cannot exist as it must disagree at the dโth digit! dโ โฆ
24
Cantorโs Diagonalization Proof
25
Fixed-point algorithms
26
What are fixed points (a.k.a. fixpoints)?
27
f(x) = x2 (1,1) (0,0)
28
{๐ฅ|(๐ฅ,๐ฅ)โ๐น} or {๐ฅ|๐น(๐ฅ)=๐ฅ}
29
Babylonian method for computing .
2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.