Presentation is loading. Please wait.

Presentation is loading. Please wait.

Maximum vanishing subspace problem, CAT(0)-space relaxation, and block-triangularization of partitioned matrix Hiroshi Hirai University of Tokyo hirai@mist.i.u-tokyo.ac.jp.

Similar presentations


Presentation on theme: "Maximum vanishing subspace problem, CAT(0)-space relaxation, and block-triangularization of partitioned matrix Hiroshi Hirai University of Tokyo hirai@mist.i.u-tokyo.ac.jp."โ€” Presentation transcript:

1 Maximum vanishing subspace problem, CAT(0)-space relaxation, and block-triangularization of partitioned matrix Hiroshi Hirai University of Tokyo Joint work with Masaki Hamada 10th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications May 23, 2017, Budapest, Hungary

2 DM-decomposition of matrix
(Dulmage-Mendelsohn 1958) A canonical form under row/column permutation Matching/stable set problem in bipartite graph โˆ— โˆ— โˆ— ๐ด โ†ฆ๐‘ƒ๐ด๐‘„= โˆ— โˆ— โˆ— โˆ— ๐‘ƒ,๐‘„:permutation matrix โˆ— โˆ—

3 ๐‘‹ ๐‘Œ * * * * * * ๐‘‹ * * ๐‘Œ ๐ด=( ๐‘Ž ๐‘–๐‘— ) bipartite graph zero submatrix
edge ๐‘–๐‘— โŸบ ๐‘Ž ๐‘–๐‘— โ‰ 0 ๐‘‹ ๐‘Œ 1โ€ฒ 1 โ€ฒ 2 โ€ฒ 3 โ€ฒ 1 1 * 2โ€ฒ 2 * * 2 ๐‘‹ 0 ๐‘‹ 1 ๐‘‹ 2 ๐‘‹ 3 3โ€ฒ * * 3 * ๐‘‹ * * ๐‘Œ ๐‘Œ 0 ๐‘Œ 1 ๐‘Œ 2 ๐‘Œ 3 ๐ด=( ๐‘Ž ๐‘–๐‘— ) bipartite graph zero submatrix stable set ๐‘‹,๐‘Œ , ๐‘‹ โ€ฒ , ๐‘Œ โ€ฒ :stableโ‡’ ๐‘‹โˆช ๐‘‹ โ€ฒ ,๐‘Œโˆฉ ๐‘Œ โ€ฒ , ๐‘‹โˆฉ ๐‘‹ โ€ฒ ,๐‘Œโˆช ๐‘Œ โ€ฒ :stable The family of maximum stable sets โ‡’ distributive lattice A maximal chain โ‡’ DM-decomposition A polynomial time algorithm via bipartite matching (max.)

4 DM-decomposition of partitioned matrix
(Ito-Iwata-Murota 1994) ๐ด= ๐ด 11 ๐ด 12 ๐ด 21 ๐ด 22 โ‹ฏ ๐ด 1๐œˆ ๐ด 2๐œˆ โ‹ฎ โ‹ฑ โ‹ฎ ๐ด ๐œ‡1 ๐ด ๐œ‡2 โ‹ฏ ๐ด ๐œ‡๐œˆ ๐ด ๐›ผ๐›ฝ : ๐‘š ๐›ผ ร— ๐‘› ๐›ฝ matrix โ†ฆ๐‘ƒ ๐ธ ๐ธ 2 โ‹ฏ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฏ ๐ธ ๐œ‡ ๐ด 11 ๐ด 12 ๐ด 21 ๐ด 22 โ‹ฏ ๐ด 1๐œˆ ๐ด 2๐œˆ โ‹ฎ โ‹ฑ โ‹ฎ ๐ด ๐œ‡1 ๐ด ๐œ‡2 โ‹ฏ ๐ด ๐œ‡๐œˆ ๐น ๐น 2 โ‹ฏ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฏ ๐น ๐œˆ ๐‘„ โˆ— ๐‘ƒ,๐‘„: permutation ๐ธ ๐›ผ , ๐น ๐›ฝ :nonsingular =

5 Example: (2,2,2;2,2,2) matrix over GF(2)
= row/column permutation

6 Maximum Vanishing Subspace Problem
(H.2016, Implicit in Ito-Iwata-Murota 1994) ๐ด= ๐ด 11 ๐ด 12 ๐ด 21 ๐ด 22 โ‹ฏ ๐ด 1๐œˆ ๐ด 2๐œˆ โ‹ฎ โ‹ฑ โ‹ฎ ๐ด ๐œ‡1 ๐ด ๐œ‡2 โ‹ฏ ๐ด ๐œ‡๐œˆ ๐ด ๐›ผ๐›ฝ : ๐‘š ๐›ผ ร— ๐‘› ๐›ฝ matrix over field ๐”ฝ Max. ๐›ผ dim ๐‘‹ ๐›ผ + ๐›ฝ dim ๐‘Œ ๐›ฝ s.t. ๐‘‹ ๐›ผ โŠ† ๐”ฝ ๐‘š ๐›ผ , ๐‘Œ ๐›ฝ โŠ† ๐”ฝ ๐‘› ๐›ฝ , ๐ด ๐›ผ๐›ฝ ๐‘‹ ๐›ผ , ๐‘Œ ๐›ฝ = โˆ€๐›ผ,๐›ฝ , subsp. where ๐ด ๐›ผ๐›ฝ : ๐”ฝ ๐‘š ๐›ผ ร— ๐”ฝ ๐‘› ๐›ฝ โ†’๐”ฝ ๐‘ข,๐‘ฃ โ†ฆ ๐‘ข ๐‘‡ ๐ด ๐›ผ๐›ฝ ๐‘ฃ Rem: ๐‘š ๐›ผ = ๐‘› ๐›ฝ =1 ---> bipartite stable set prob.

7 ๐ด ~ Vanishing subspace (๐‘‹,๐‘Œ)โ‡” ๐‘‹ ๐‘Œ ๐‘‹= ๐‘‹ 1 โŠ• ๐‘‹ 2 โŠ•โ‹ฏโŠ• ๐‘‹ ๐œ‡
๐‘Œ= ๐‘Œ 1 โŠ• ๐‘Œ 2 โŠ•โ‹ฏโŠ• ๐‘Œ ๐œˆ ๐ด ๐›ผ๐›ฝ ๐‘‹ ๐›ผ , ๐‘Œ ๐›ฝ = โˆ€๐›ผ,๐›ฝ row/col operation โ€œwithin blocksโ€ + row/col permutation ๐ด ~ โ† dim ๐‘‹โ†’ ๐‘‹ โŸต dim ๐‘Œ โŸถ ๐‘Œ ๐‘‹,๐‘Œ , ๐‘‹ โ€ฒ , ๐‘Œ โ€ฒ :vanishing โ‡’ ๐‘‹+ ๐‘‹ โ€ฒ ,๐‘Œโˆฉ ๐‘Œ โ€ฒ , ๐‘‹โˆฉ ๐‘‹ โ€ฒ ,๐‘Œ+ ๐‘Œ โ€ฒ :vanishing The family of max. vanishing subspace โ‡’ modular lattice A maximal chain โ‡’ DM-decomposition (max.)

8 Polytime algorithm for DM-decom. is not known in general
Special cases: one submatrix > Gaussian elimination each submatrix is 1x > original DM-decom. each submatrix is *x > CCF of mixed matrix each submatrix is rank-1 (H. 16) Murota-Iri-Nakamura 87 matroid intersection ๐ด 11 ๐ด 12 ๐ด 21 ๐ด 22 , ๐ด ๐›ผ๐›ฝ : nonsingular ---> eigenvalue comp. sizes of submatrices & base field are fixed (H-Nakashima 2017) VCSP

9 Why are MVSP & DM-decomposition interesting?
Numerical computation vs. combinatorial optimization Submodular optimization on (infinite) modular lattice ใ€€ Finite case: Kuivinen 2009,2011, Fujishige et al. 2015, ( ) ๐‘› Suggest โ€œvector-space versionโ€ of combinatorial optimization ?? โ‹ฏ ๐‘† โŠ†๐‘‰, |๐‘†| subset finite set cardinality finite-dimensional vector space subspace dim S dimension

10 Result (answering the problem of Ito-Iwata-Murota 1994)
Q1. Is MVSP solvable in polynomial time ? YES (Hamada-H. 2017) Q2. Is DM-decom. obtained in polynomial time ? Still we do not know the complete answer but... DM-decom. โŠ‡ eigenvalue problem, more difficult numerical problem A reasonable coarse decomposition --- quasi DM-decomposition --- is obtained in polytime by solving weighted-MVSP. --- generalizes original-DM & CCF

11 MVSP is solvable in polynomial time
In the rest of the talk, we describe the outline of the proof Theorem (Hamada-H. 2017) MVSP is solvable in polynomial time โŠ‡ polynomial number of arithmetic operations in ๐”ฝ Max. ๐›ผ dim ๐‘‹ ๐›ผ + ๐›ฝ dim ๐‘Œ ๐›ฝ s.t. ๐‘‹ ๐›ผ โŠ† ๐”ฝ ๐‘š ๐›ผ , ๐‘Œ ๐›ฝ โŠ† ๐”ฝ ๐‘› ๐›ฝ ๐ด ๐›ผ๐›ฝ ๐‘‹ ๐›ผ , ๐‘Œ ๐›ฝ = โˆ€๐›ผ,๐›ฝ subsp. Difficulty: Duality & LP/convex relaxation are not known

12 MVSP is submodular optimization
๐‘š+๐‘›+1 Min. โˆ’ ๐›ผ dim ๐‘‹ ๐›ผ โˆ’ ๐›ฝ dim ๐‘Œ ๐›ฝ +๐‘€ ๐›ผ,๐›ฝ rank ๐ด ๐›ผ๐›ฝ | ๐‘‹ ๐›ผ ร— ๐‘Œ ๐›ฝ s.t. ( ๐‘‹ 1 , ๐‘‹ 2 ,โ€ฆ, ๐‘‹ ๐œ‡ , ๐‘Œ 1 , ๐‘Œ 2 ,โ€ฆ, ๐‘Œ ๐œˆ ) โˆˆ โ„’ 1 ร— โ„’ 2 ร—โ€ฆร— โ„’ ๐œ‡ ร— โ„ณ 1 ร— โ„ณ 2 ร—โ€ฆร— โ„ณ ๐œˆ โ„’ ๐›ผ / โ„ณ ๐›ฝ : modular lattice of all vector subsp. in ๐”ฝ ๐‘š ๐›ผ / ๐”ฝ ๐‘› ๐›ฝ w.r.t. inclusion w.r.t. reverse inclusion ๐‘šโ‰” ๐›ผ ๐‘š ๐›ผ ,๐‘›โ‰” ๐›ฝ ๐‘› ๐›ฝ Lemma (cf. Iwata-Murota 1995) ๐‘‹ ๐›ผ ร— ๐‘Œ ๐›ฝ โŸผrank ๐ด ๐›ผ๐›ฝ | ๐‘‹ ๐›ผ ร— ๐‘Œ ๐›ฝ is submodular on โ„’ ๐›ผ ร— โ„ณ ๐›ฝ

13 Outline : Beyond Euclidean convex relaxation
Submodular optimization on distributive lattice modular lattice โ†ช Lovรกsz extension โ†ช Convex optimization on Euclidean space CAT(0)-space MVSP is submodular optimization on modular lattice. Splitting Proximal Point Algorithm (Baฤรกk, Ohta-Pรกlfia) to minimize sum of convex function in CAT(0)-space. Apply SPPA to CAT(0)-space relaxation of MVSP.

14 CAT(0)-space (Gromov 87) โ‡” geodesic metric space (๐‘†,๐‘‘) in which
Cartan-Alexandrov-Topogonov curvature โ‰ค0 CAT(0)-space (Gromov 87) โ‡” geodesic metric space (๐‘†,๐‘‘) in which every triangle is โ€œslimmerโ€ ๐‘ฅ ๐‘ฆ ๐‘ง โ„ 2 ๐‘‘ ๐‘ฅ,๐‘ฆ = ๐‘ฅ โˆ’ ๐‘ฆ 2 ๐‘‘ ๐‘ฆ,๐‘ง = ๐‘ฆ โˆ’ ๐‘ง 2 ๐‘‘ ๐‘ง,๐‘ฅ = ๐‘ง โˆ’ ๐‘ฅ 2 ๐‘ ๐‘ฅ ๐‘† ๐‘ ๐‘ฆ ๐‘ง ๐‘‘ ๐‘ฅ,๐‘ โ‰ค ๐‘ฅ โˆ’ ๐‘ 2 FACT: CAT(0)-space is uniquely geodesic ---> convex function

15 Modular lattice โ†ช CAT(0)-space
othoscheme complex โ„’: modular lattice of finite rank ๐พ โ„’ := the set of convex combinations ๐‘โˆˆโ„’ ๐œ† ๐‘ ๐‘ of โ„’ s.t. supp ฮป is a chain (Brady-McCammond 2012) ๐‘ 3 (โ„ ๐‘› , ๐‘™ 2 ) 000 100 110 111 ๐‘ 2 โ„’ ๐‘ 1 ๐‘ 0 Theorem (Haettel-Kielak-Schwer 2017, Chalopin-Chepoi-H-Osajda 2014) ๐พ โ„’ is a complete CAT(0)-space.

16 Example .... ... โ„’ ๐พ โ„’ โ„’= 2 {1,2,โ€ฆ,๐‘›} ๐พ โ„’ โ‰ƒ 0,1 ๐‘›

17 Submodular function โ†ช convex function
โ„’: modular lattice of finite rank Lovasz extension ๐‘“ :๐พ(โ„’)โ†’โ„ of ๐‘“:โ„’โ†’โ„ ๐‘“ ๐‘ฅ โ‰” ๐‘– ๐œ† ๐‘– ๐‘“( ๐‘ ๐‘– ) (๐‘ฅ= ๐‘– ๐œ† ๐‘– ๐‘ ๐‘– โˆˆ๐พ(โ„’)) Theorem (H. 2016) ๐‘“ is submodular on โ„’ โ‡” ๐‘“ is convex on ๐พ(โ„’) (w.r.t. CAT(0)-metric) The original version: โ„’= 2 1,2,โ€ฆ,๐‘› ,๐พ โ„’ โ‰ƒ [0,1] ๐‘›

18 MVSP โ†ช convex optimization on CAT(0)-space
Min. โˆ’ ๐›ผ dim ( ๐‘ฅ ๐›ผ )โˆ’ ๐›ฝ dim ( ๐‘ฆ ๐›ฝ ) +๐‘€ ๐›ผ,๐›ฝ ๐‘… ๐›ผ๐›ฝ ( ๐‘ฅ ๐›ผ , ๐‘ฆ ๐›ฝ ) s.t. ( ๐‘ฅ 1 , ๐‘ฅ 2 ,โ€ฆ, ๐‘ฅ ๐œ‡ , ๐‘ฆ 1 , ๐‘ฆ 2 ,โ€ฆ, ๐‘ฆ ๐œˆ ) โˆˆ ๐พ(โ„’ 1 ร— โ„’ 2 ร—โ€ฆร— โ„’ ๐œ‡ ร— โ„ณ 1 ร— โ„ณ 2 ร—โ€ฆร— โ„ณ ๐œˆ ) ๐พ(โ„’ 1 )ร—๐พ( โ„’ 2 )ร—โ€ฆร— ๐พ(โ„’ ๐œ‡ )ร— ๐พ(โ„ณ 1 )ร— ๐พ(โ„ณ 2 )ร—โ€ฆร— ๐พ(โ„ณ ๐œˆ ) โ‰… ๐‘… ๐›ผ๐›ฝ ๐‘‹ ๐›ผ , ๐‘Œ ๐›ฝ โ‰” rank ๐ด ๐›ผ๐›ฝ | ๐‘‹ ๐›ผ ร— ๐‘Œ ๐›ฝ We apply continuous optimization algorithm to this problem

19 To recover a minimizer of f from ๐‘“ , we use:
Lemma ๐‘“:โ„’โ†’โ„ค, ๐‘ฅ= ๐œ† ๐‘– ๐‘ ๐‘– โˆˆ๐พ โ„’ If ๐‘“ ๐‘ฅ โˆ’min ๐‘“<1 โ‡’ some ๐‘ ๐‘– is a minimizer of ๐‘“

20 Splitting Proximal Point Algorithm
(Baฤรกk 14) ๐‘†,๐‘‘ : complete CAT(0)-space ๐‘“ 1 , ๐‘“ 2 ,..., ๐‘“ ๐‘ : convex functions on ๐‘† Goal: minimize ๐‘“โ‰” ๐‘–=1 ๐‘ ๐‘“ ๐‘– SPPA: ๐‘ง ๐‘˜+1 โ‰” argmin ๐‘ง โˆˆ ๐‘† ๐‘“ ๐‘˜ mod ๐‘ ๐‘ง ๐œ† ๐‘˜ ๐‘‘(๐‘ง, ๐‘ง ๐‘˜ ) 2 Theorem (Ohta-Pรกlfia 15) ๐‘“ ๐‘– :๐ฟ-Lipschitz, ๐‘“:๐œ–-strongly-convex, ๐œ† ๐‘˜ โ‰” 1 2๐œ– ๐‘˜+1 โ‡’ ๐‘“ ๐‘ง ๐‘˜ โˆ’min ๐‘“โ‰ค poly(๐ฟ, ๐‘, ๐œ– โˆ’1 , diam ๐‘†) ๐‘˜

21 Apply SPPA to perturbed objective ๐›ผ โˆ’ dim ๐‘ฅ ๐›ผ +๐œ– ๐‘‘(0, ๐‘ฅ ๐›ผ ) 2
+ ๐›ผ,๐›ฝ ๐‘€ ๐‘… ๐›ผ๐›ฝ ( ๐‘ฅ ๐›ผ , ๐‘ฆ ๐›ฝ ) ensure ๐œ–-strong-convexity ๐œ– โˆ’1 =๐‘‚(๐‘›+๐‘š) ๐‘ง=( ๐‘ฅ 1 , ๐‘ฅ 2 ,โ€ฆ, ๐‘ฅ ๐œ‡ , ๐‘ฆ 1 , ๐‘ฆ 2 ,โ€ฆ, ๐‘ฆ ๐œˆ ) 0โ‰ค obj ๐‘ง โˆ’obj(๐‘ง)โ‰ค1/2 each term is ๐‘‚ poly ๐‘š,๐‘› -Lipschitz ๐‘=๐‘‚(๐‘š๐‘›) ๐‘ง ๐‘˜ = generated by SPPA for obj ๐‘˜=ฮฉ poly ๐‘š,๐‘› โ‡’obj ๐‘ง ๐‘˜ โˆ’optโ‰ค obj ๐‘ง ๐‘˜ โˆ’ opt <1 โ‡’supp( ๐‘ง ๐‘˜ )โˆ‹ minimizer

22 In each iteration of SPPA, we need to solve:
P1: Min. โˆ’ dim ๐‘ฅ +๐œ–๐‘‘ 0,๐‘ฅ ๐œ† ๐‘‘ ๐‘ฅ 0 ,๐‘ฅ 2 s.t. ๐‘ฅ โˆˆ ๐พ โ„’ P2: Min. ๐‘… ๐ด ๐‘ฅ,๐‘ฆ + 1 2๐œ† ๐‘‘ ๐‘ฅ 0 ,๐‘ฅ 2 +๐‘‘ ๐‘ฆ 0 ,๐‘ฆ 2 s.t ๐‘ฅ,๐‘ฆ โˆˆ๐พ โ„’ร—โ„ณ โ‰…๐พ โ„’)ร—๐พ(โ„ณ rev. inclusion โ„’ /โ„ณ: modular lattice of all vector subsp. in ๐”ฝ ๐‘š / ๐”ฝ ๐‘› ๐ด: ๐”ฝ ๐‘š ร— ๐”ฝ ๐‘› โ†’๐”ฝ: bilinear form ๐‘… ๐ด ๐‘‹,๐‘Œ โ‰”rank ๐ด โ€‹ ๐‘‹ร—๐‘Œ P1 and P2 are solvable in polynomial time

23 Minimizer ๐‘ฅ โˆ— exists in the simplex โˆ‹ ๐‘ฅ 0
1 2๐œ† ๐‘ฅ 0 โˆ’๐‘ฅ 2 2 โˆ’ ๐‘ฅ 1 ๐œ– ๐‘ฅ 2 2 P1: Min. โˆ’ dim ๐‘ฅ +๐œ–๐‘‘ 0,๐‘ฅ ๐œ† ๐‘‘ ๐‘ฅ 0 ,๐‘ฅ 2 s.t. ๐‘ฅ โˆˆ ๐พ โ„’ ๐‘ 3 ๐‘ฅ 0 = ๐‘– ๐œ† ๐‘– ๐‘ ๐‘– ๐‘ฅ โˆ— ๐‘ 2 ๐‘ 0 ๐‘ 1 Minimizer ๐‘ฅ โˆ— exists in the simplex โˆ‹ ๐‘ฅ 0 ---> easy convex quadratic program

24 โ„’ โ„ณ P2: Min. ๐‘… ๐ด ๐‘ฅ,๐‘ฆ + 1 2๐œ† ๐‘‘ ๐‘ฅ 0 ,๐‘ฅ 2 +๐‘‘ ๐‘ฆ 0 ,๐‘ฆ 2 s.t. ๐‘ฅ,๐‘ฆ โˆˆ๐พ โ„’ร—โ„ณ
X 0โŠฅ X 0 Y 0โŠฅ Y 0 โˆ™ โŠฅ : orthogonal space w.r.t. ๐ด distributive lattice Minimizer ( ๐‘ฅ โˆ— , ๐‘ฆ โˆ— ) exists in ๐พ X 0 , Y 0โŠฅ ร—๐พ X 0โŠฅ , Y 0 โ†ช 0,1 ๐‘š+๐‘› ---> easy convex quadratic program

25 Concluding remarks Weighted-MVSP: Max. ๐›ผ ๐ถ ๐›ผ dim ๐‘‹ ๐›ผ + ๐›ฝ ๐ท ๐›ฝ dim ๐‘Œ ๐›ฝ
is solvable in pseudo-polynomial time Quasi DM-decomposition โŸบ a chain of max. vanishing subsp. detectable by WMVSP Duality theory + better algorithm for MVSP ? Vector-space generalization of other problems ? CAT(0)-space relaxation ---> new paradigm in combinatorial optimization ?

26 Thank you for your attention!
M. Hamada and H. Hirai: Maximum vanishing subspace problem, CAT(0)-space relaxation, and block-triangularization of partitioned matrix, 2017, arXiv.


Download ppt "Maximum vanishing subspace problem, CAT(0)-space relaxation, and block-triangularization of partitioned matrix Hiroshi Hirai University of Tokyo hirai@mist.i.u-tokyo.ac.jp."

Similar presentations


Ads by Google