Download presentation
Presentation is loading. Please wait.
Published byVerawati Atmadja Modified over 6 years ago
1
Maximum vanishing subspace problem, CAT(0)-space relaxation, and block-triangularization of partitioned matrix Hiroshi Hirai University of Tokyo Joint work with Masaki Hamada 10th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications May 23, 2017, Budapest, Hungary
2
DM-decomposition of matrix
(Dulmage-Mendelsohn 1958) A canonical form under row/column permutation Matching/stable set problem in bipartite graph โ โ โ ๐ด โฆ๐๐ด๐= โ โ โ โ ๐,๐:permutation matrix โ โ
3
๐ ๐ * * * * * * ๐ * * ๐ ๐ด=( ๐ ๐๐ ) bipartite graph zero submatrix
edge ๐๐ โบ ๐ ๐๐ โ 0 ๐ ๐ 1โฒ 1 โฒ 2 โฒ 3 โฒ 1 1 * 2โฒ 2 * * 2 ๐ 0 ๐ 1 ๐ 2 ๐ 3 3โฒ * * 3 * ๐ * * ๐ ๐ 0 ๐ 1 ๐ 2 ๐ 3 ๐ด=( ๐ ๐๐ ) bipartite graph zero submatrix stable set ๐,๐ , ๐ โฒ , ๐ โฒ :stableโ ๐โช ๐ โฒ ,๐โฉ ๐ โฒ , ๐โฉ ๐ โฒ ,๐โช ๐ โฒ :stable The family of maximum stable sets โ distributive lattice A maximal chain โ DM-decomposition A polynomial time algorithm via bipartite matching (max.)
4
DM-decomposition of partitioned matrix
(Ito-Iwata-Murota 1994) ๐ด= ๐ด 11 ๐ด 12 ๐ด 21 ๐ด 22 โฏ ๐ด 1๐ ๐ด 2๐ โฎ โฑ โฎ ๐ด ๐1 ๐ด ๐2 โฏ ๐ด ๐๐ ๐ด ๐ผ๐ฝ : ๐ ๐ผ ร ๐ ๐ฝ matrix โฆ๐ ๐ธ ๐ธ 2 โฏ โฎ โฑ โฎ โฏ ๐ธ ๐ ๐ด 11 ๐ด 12 ๐ด 21 ๐ด 22 โฏ ๐ด 1๐ ๐ด 2๐ โฎ โฑ โฎ ๐ด ๐1 ๐ด ๐2 โฏ ๐ด ๐๐ ๐น ๐น 2 โฏ โฎ โฑ โฎ โฏ ๐น ๐ ๐ โ ๐,๐: permutation ๐ธ ๐ผ , ๐น ๐ฝ :nonsingular =
5
Example: (2,2,2;2,2,2) matrix over GF(2)
= row/column permutation
6
Maximum Vanishing Subspace Problem
(H.2016, Implicit in Ito-Iwata-Murota 1994) ๐ด= ๐ด 11 ๐ด 12 ๐ด 21 ๐ด 22 โฏ ๐ด 1๐ ๐ด 2๐ โฎ โฑ โฎ ๐ด ๐1 ๐ด ๐2 โฏ ๐ด ๐๐ ๐ด ๐ผ๐ฝ : ๐ ๐ผ ร ๐ ๐ฝ matrix over field ๐ฝ Max. ๐ผ dim ๐ ๐ผ + ๐ฝ dim ๐ ๐ฝ s.t. ๐ ๐ผ โ ๐ฝ ๐ ๐ผ , ๐ ๐ฝ โ ๐ฝ ๐ ๐ฝ , ๐ด ๐ผ๐ฝ ๐ ๐ผ , ๐ ๐ฝ = โ๐ผ,๐ฝ , subsp. where ๐ด ๐ผ๐ฝ : ๐ฝ ๐ ๐ผ ร ๐ฝ ๐ ๐ฝ โ๐ฝ ๐ข,๐ฃ โฆ ๐ข ๐ ๐ด ๐ผ๐ฝ ๐ฃ Rem: ๐ ๐ผ = ๐ ๐ฝ =1 ---> bipartite stable set prob.
7
๐ด ~ Vanishing subspace (๐,๐)โ ๐ ๐ ๐= ๐ 1 โ ๐ 2 โโฏโ ๐ ๐
๐= ๐ 1 โ ๐ 2 โโฏโ ๐ ๐ ๐ด ๐ผ๐ฝ ๐ ๐ผ , ๐ ๐ฝ = โ๐ผ,๐ฝ row/col operation โwithin blocksโ + row/col permutation ๐ด ~ โ dim ๐โ ๐ โต dim ๐ โถ ๐ ๐,๐ , ๐ โฒ , ๐ โฒ :vanishing โ ๐+ ๐ โฒ ,๐โฉ ๐ โฒ , ๐โฉ ๐ โฒ ,๐+ ๐ โฒ :vanishing The family of max. vanishing subspace โ modular lattice A maximal chain โ DM-decomposition (max.)
8
Polytime algorithm for DM-decom. is not known in general
Special cases: one submatrix > Gaussian elimination each submatrix is 1x > original DM-decom. each submatrix is *x > CCF of mixed matrix each submatrix is rank-1 (H. 16) Murota-Iri-Nakamura 87 matroid intersection ๐ด 11 ๐ด 12 ๐ด 21 ๐ด 22 , ๐ด ๐ผ๐ฝ : nonsingular ---> eigenvalue comp. sizes of submatrices & base field are fixed (H-Nakashima 2017) VCSP
9
Why are MVSP & DM-decomposition interesting?
Numerical computation vs. combinatorial optimization Submodular optimization on (infinite) modular lattice ใ Finite case: Kuivinen 2009,2011, Fujishige et al. 2015, ( ) ๐ Suggest โvector-space versionโ of combinatorial optimization ?? โฏ ๐ โ๐, |๐| subset finite set cardinality finite-dimensional vector space subspace dim S dimension
10
Result (answering the problem of Ito-Iwata-Murota 1994)
Q1. Is MVSP solvable in polynomial time ? YES (Hamada-H. 2017) Q2. Is DM-decom. obtained in polynomial time ? Still we do not know the complete answer but... DM-decom. โ eigenvalue problem, more difficult numerical problem A reasonable coarse decomposition --- quasi DM-decomposition --- is obtained in polytime by solving weighted-MVSP. --- generalizes original-DM & CCF
11
MVSP is solvable in polynomial time
In the rest of the talk, we describe the outline of the proof Theorem (Hamada-H. 2017) MVSP is solvable in polynomial time โ polynomial number of arithmetic operations in ๐ฝ Max. ๐ผ dim ๐ ๐ผ + ๐ฝ dim ๐ ๐ฝ s.t. ๐ ๐ผ โ ๐ฝ ๐ ๐ผ , ๐ ๐ฝ โ ๐ฝ ๐ ๐ฝ ๐ด ๐ผ๐ฝ ๐ ๐ผ , ๐ ๐ฝ = โ๐ผ,๐ฝ subsp. Difficulty: Duality & LP/convex relaxation are not known
12
MVSP is submodular optimization
๐+๐+1 Min. โ ๐ผ dim ๐ ๐ผ โ ๐ฝ dim ๐ ๐ฝ +๐ ๐ผ,๐ฝ rank ๐ด ๐ผ๐ฝ | ๐ ๐ผ ร ๐ ๐ฝ s.t. ( ๐ 1 , ๐ 2 ,โฆ, ๐ ๐ , ๐ 1 , ๐ 2 ,โฆ, ๐ ๐ ) โ โ 1 ร โ 2 รโฆร โ ๐ ร โณ 1 ร โณ 2 รโฆร โณ ๐ โ ๐ผ / โณ ๐ฝ : modular lattice of all vector subsp. in ๐ฝ ๐ ๐ผ / ๐ฝ ๐ ๐ฝ w.r.t. inclusion w.r.t. reverse inclusion ๐โ ๐ผ ๐ ๐ผ ,๐โ ๐ฝ ๐ ๐ฝ Lemma (cf. Iwata-Murota 1995) ๐ ๐ผ ร ๐ ๐ฝ โผrank ๐ด ๐ผ๐ฝ | ๐ ๐ผ ร ๐ ๐ฝ is submodular on โ ๐ผ ร โณ ๐ฝ
13
Outline : Beyond Euclidean convex relaxation
Submodular optimization on distributive lattice modular lattice โช Lovรกsz extension โช Convex optimization on Euclidean space CAT(0)-space MVSP is submodular optimization on modular lattice. Splitting Proximal Point Algorithm (Baฤรกk, Ohta-Pรกlfia) to minimize sum of convex function in CAT(0)-space. Apply SPPA to CAT(0)-space relaxation of MVSP.
14
CAT(0)-space (Gromov 87) โ geodesic metric space (๐,๐) in which
Cartan-Alexandrov-Topogonov curvature โค0 CAT(0)-space (Gromov 87) โ geodesic metric space (๐,๐) in which every triangle is โslimmerโ ๐ฅ ๐ฆ ๐ง โ 2 ๐ ๐ฅ,๐ฆ = ๐ฅ โ ๐ฆ 2 ๐ ๐ฆ,๐ง = ๐ฆ โ ๐ง 2 ๐ ๐ง,๐ฅ = ๐ง โ ๐ฅ 2 ๐ ๐ฅ ๐ ๐ ๐ฆ ๐ง ๐ ๐ฅ,๐ โค ๐ฅ โ ๐ 2 FACT: CAT(0)-space is uniquely geodesic ---> convex function
15
Modular lattice โช CAT(0)-space
othoscheme complex โ: modular lattice of finite rank ๐พ โ := the set of convex combinations ๐โโ ๐ ๐ ๐ of โ s.t. supp ฮป is a chain (Brady-McCammond 2012) ๐ 3 (โ ๐ , ๐ 2 ) 000 100 110 111 ๐ 2 โ ๐ 1 ๐ 0 Theorem (Haettel-Kielak-Schwer 2017, Chalopin-Chepoi-H-Osajda 2014) ๐พ โ is a complete CAT(0)-space.
16
Example .... ... โ ๐พ โ โ= 2 {1,2,โฆ,๐} ๐พ โ โ 0,1 ๐
17
Submodular function โช convex function
โ: modular lattice of finite rank Lovasz extension ๐ :๐พ(โ)โโ of ๐:โโโ ๐ ๐ฅ โ ๐ ๐ ๐ ๐( ๐ ๐ ) (๐ฅ= ๐ ๐ ๐ ๐ ๐ โ๐พ(โ)) Theorem (H. 2016) ๐ is submodular on โ โ ๐ is convex on ๐พ(โ) (w.r.t. CAT(0)-metric) The original version: โ= 2 1,2,โฆ,๐ ,๐พ โ โ [0,1] ๐
18
MVSP โช convex optimization on CAT(0)-space
Min. โ ๐ผ dim ( ๐ฅ ๐ผ )โ ๐ฝ dim ( ๐ฆ ๐ฝ ) +๐ ๐ผ,๐ฝ ๐
๐ผ๐ฝ ( ๐ฅ ๐ผ , ๐ฆ ๐ฝ ) s.t. ( ๐ฅ 1 , ๐ฅ 2 ,โฆ, ๐ฅ ๐ , ๐ฆ 1 , ๐ฆ 2 ,โฆ, ๐ฆ ๐ ) โ ๐พ(โ 1 ร โ 2 รโฆร โ ๐ ร โณ 1 ร โณ 2 รโฆร โณ ๐ ) ๐พ(โ 1 )ร๐พ( โ 2 )รโฆร ๐พ(โ ๐ )ร ๐พ(โณ 1 )ร ๐พ(โณ 2 )รโฆร ๐พ(โณ ๐ ) โ
๐
๐ผ๐ฝ ๐ ๐ผ , ๐ ๐ฝ โ rank ๐ด ๐ผ๐ฝ | ๐ ๐ผ ร ๐ ๐ฝ We apply continuous optimization algorithm to this problem
19
To recover a minimizer of f from ๐ , we use:
Lemma ๐:โโโค, ๐ฅ= ๐ ๐ ๐ ๐ โ๐พ โ If ๐ ๐ฅ โmin ๐<1 โ some ๐ ๐ is a minimizer of ๐
20
Splitting Proximal Point Algorithm
(Baฤรกk 14) ๐,๐ : complete CAT(0)-space ๐ 1 , ๐ 2 ,..., ๐ ๐ : convex functions on ๐ Goal: minimize ๐โ ๐=1 ๐ ๐ ๐ SPPA: ๐ง ๐+1 โ argmin ๐ง โ ๐ ๐ ๐ mod ๐ ๐ง ๐ ๐ ๐(๐ง, ๐ง ๐ ) 2 Theorem (Ohta-Pรกlfia 15) ๐ ๐ :๐ฟ-Lipschitz, ๐:๐-strongly-convex, ๐ ๐ โ 1 2๐ ๐+1 โ ๐ ๐ง ๐ โmin ๐โค poly(๐ฟ, ๐, ๐ โ1 , diam ๐) ๐
21
Apply SPPA to perturbed objective ๐ผ โ dim ๐ฅ ๐ผ +๐ ๐(0, ๐ฅ ๐ผ ) 2
+ ๐ผ,๐ฝ ๐ ๐
๐ผ๐ฝ ( ๐ฅ ๐ผ , ๐ฆ ๐ฝ ) ensure ๐-strong-convexity ๐ โ1 =๐(๐+๐) ๐ง=( ๐ฅ 1 , ๐ฅ 2 ,โฆ, ๐ฅ ๐ , ๐ฆ 1 , ๐ฆ 2 ,โฆ, ๐ฆ ๐ ) 0โค obj ๐ง โobj(๐ง)โค1/2 each term is ๐ poly ๐,๐ -Lipschitz ๐=๐(๐๐) ๐ง ๐ = generated by SPPA for obj ๐=ฮฉ poly ๐,๐ โobj ๐ง ๐ โoptโค obj ๐ง ๐ โ opt <1 โsupp( ๐ง ๐ )โ minimizer
22
In each iteration of SPPA, we need to solve:
P1: Min. โ dim ๐ฅ +๐๐ 0,๐ฅ ๐ ๐ ๐ฅ 0 ,๐ฅ 2 s.t. ๐ฅ โ ๐พ โ P2: Min. ๐
๐ด ๐ฅ,๐ฆ + 1 2๐ ๐ ๐ฅ 0 ,๐ฅ 2 +๐ ๐ฆ 0 ,๐ฆ 2 s.t ๐ฅ,๐ฆ โ๐พ โรโณ โ
๐พ โ)ร๐พ(โณ rev. inclusion โ /โณ: modular lattice of all vector subsp. in ๐ฝ ๐ / ๐ฝ ๐ ๐ด: ๐ฝ ๐ ร ๐ฝ ๐ โ๐ฝ: bilinear form ๐
๐ด ๐,๐ โrank ๐ด โ ๐ร๐ P1 and P2 are solvable in polynomial time
23
Minimizer ๐ฅ โ exists in the simplex โ ๐ฅ 0
1 2๐ ๐ฅ 0 โ๐ฅ 2 2 โ ๐ฅ 1 ๐ ๐ฅ 2 2 P1: Min. โ dim ๐ฅ +๐๐ 0,๐ฅ ๐ ๐ ๐ฅ 0 ,๐ฅ 2 s.t. ๐ฅ โ ๐พ โ ๐ 3 ๐ฅ 0 = ๐ ๐ ๐ ๐ ๐ ๐ฅ โ ๐ 2 ๐ 0 ๐ 1 Minimizer ๐ฅ โ exists in the simplex โ ๐ฅ 0 ---> easy convex quadratic program
24
โ โณ P2: Min. ๐
๐ด ๐ฅ,๐ฆ + 1 2๐ ๐ ๐ฅ 0 ,๐ฅ 2 +๐ ๐ฆ 0 ,๐ฆ 2 s.t. ๐ฅ,๐ฆ โ๐พ โรโณ
X 0โฅ X 0 Y 0โฅ Y 0 โ โฅ : orthogonal space w.r.t. ๐ด distributive lattice Minimizer ( ๐ฅ โ , ๐ฆ โ ) exists in ๐พ X 0 , Y 0โฅ ร๐พ X 0โฅ , Y 0 โช 0,1 ๐+๐ ---> easy convex quadratic program
25
Concluding remarks Weighted-MVSP: Max. ๐ผ ๐ถ ๐ผ dim ๐ ๐ผ + ๐ฝ ๐ท ๐ฝ dim ๐ ๐ฝ
is solvable in pseudo-polynomial time Quasi DM-decomposition โบ a chain of max. vanishing subsp. detectable by WMVSP Duality theory + better algorithm for MVSP ? Vector-space generalization of other problems ? CAT(0)-space relaxation ---> new paradigm in combinatorial optimization ?
26
Thank you for your attention!
M. Hamada and H. Hirai: Maximum vanishing subspace problem, CAT(0)-space relaxation, and block-triangularization of partitioned matrix, 2017, arXiv.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.