Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fundamentals and Applications of Bainitic Steels

Similar presentations


Presentation on theme: "Fundamentals and Applications of Bainitic Steels"— Presentation transcript:

1 Fundamentals and Applications of Bainitic Steels
Thermodynamics Simulation of kinetics “Superbainite” Mechanical properties Future

2

3

4 upper bainite 1 µm

5 lower bainite

6 Surface Surface 2 50 µm Srinivasan & Wayman, 1968

7 s d c r 1

8

9

10

11 50 µm

12

13 Carbon supersaturated plate
Carbon diffusion into Carbon diffusion into austenite austenite and carbide precipitation in ferrite Carbide precipitation from austenite UPPER BAINITE LOWER BAINITE (High Temperature) (Low Temperature)

14 1 2 Fe-0.4C wt% Decarburisation time / s 500 400 300 Temperature / °C

15

16 Temperature Ae3' T' o x Carbon in austenite

17

18 Growth is diffusionless.
Strain energy must be accounted for.

19 Takahashi and Bhadeshia
Carbon supersaturated plate Carbon diffusion into Carbon diffusion into austenite austenite and carbide precipitation in ferrite Carbide precipitation from austenite UPPER BAINITE LOWER BAINITE (High Temperature) (Low Temperature) Takahashi and Bhadeshia

20

21 Oka and Okamoto

22 Ohmori and Honeycombe

23

24 T h G N

25 Each point represents a different steel
Nucleation function G N Each point represents a different steel Bhadeshia, 1981

26 The nucleation of bainite must involve the partitioning of carbon
Why does the required free energy vary linearly with T?

27 hexagonal close-packed cubic close-packed
Christian, 1951

28 Brooks, Loretto and Smallman, 1979

29 Olson & Cohen, 1976

30

31

32

33 Nucleation of bainite must involve the partitioning of carbon.
Mechanism of nucleation is otherwise identical to that of martensite.

34 Fe-2Si-3Mn-C wt% 800 B 600 Temperature / K 400 M 200 0.2 0.4 0.6 0.8 1
0.2 0.4 0.6 0.8 1 1.2 1.4 Carbon / wt%

35 Fe-2Si-3Mn-C wt% 1.E+08 1 month Time / s 1.E+04 1.E+00 0.5 1 1.5
1 year 1 month Time / s 1.E+04 1.E+00 0.5 1 1.5 Carbon / wt%

36 wt% Low transformation temperature Bainitic hardenability
Reasonable transformation time Elimination of cementite Austenite grain size control Avoidance of temper embrittlement wt%

37 Homogenisation Austenitisation Isothermal transformation Temperature
1200 o C 2 days 1000 o C 15 min Temperature Air 125 o C - 325 o C slow cooling hours - months cooling Quench Time

38

39 g g a a a Caballero, Mateo, Bhadeshia 200 Å

40 Low temperature transformation: 0.25 T/Tm
Fine microstructure: nm thick plates Harder than most martensites (710 HV) Carbide-free Designed using theory alone

41 g g a a a Very strong Huge uniform ductility No deformation
No rapid cooling No residual stresses a Cheap Uniform in very large sections a 200 Å

42 Stress / GPa Velocity km s-1 Hammond and Cross, 2004

43 “more serious battlefield threats”

44 ballistic mass efficiency
consider unit area of armour

45

46

47

48 Caballero, Mateo, Bhadeshia

49 Caballero, Mateo, Bhadeshia

50

51 Sherif, 2005, Ph.D. thesis, Cambridge

52 Below percolation threshold
Above percolation threshold

53 Geometrical percolation threshold of overlapping ellipsoids

54

55 0.4 C 2 Si 3 Mn wt% 1 µm

56 Very poor toughness!

57 50 µm

58 stress transfer length
Fe-1C-1.5Si…… wt% periodic cracking stress transfer length Chatterjee & Bhadeshia, 2005

59

60 Carbide-free alloys wt %

61

62 Impact Energy Charpy impact / J Temperature / °C Test temperature / °C
10 20 30 40 50 60 70 0.4C-3Mn-2Si 0.4C-4Ni -2Si 0.2C-3Mn-2Si Charpy impact / J 200 100 -100 -200 Temperature / °C Test temperature / °C

63

64 kilocycles to Crack Initiation
Pearlite Martensite Bainite 1200 1000 800 600 400 200 kilocycles to Crack Initiation Yates, Jerath

65 Yates, Jerath

66 U.K.


Download ppt "Fundamentals and Applications of Bainitic Steels"

Similar presentations


Ads by Google