Download presentation
Presentation is loading. Please wait.
Published byAlyson Underwood Modified over 6 years ago
1
Fundamentals and Applications of Bainitic Steels
Thermodynamics Simulation of kinetics “Superbainite” Mechanical properties Future
4
upper bainite 1 µm
5
lower bainite
6
Surface Surface 2 50 µm Srinivasan & Wayman, 1968
7
s d c r 1
11
50 µm
13
Carbon supersaturated plate
Carbon diffusion into Carbon diffusion into austenite austenite and carbide precipitation in ferrite Carbide precipitation from austenite UPPER BAINITE LOWER BAINITE (High Temperature) (Low Temperature)
14
1 2 Fe-0.4C wt% Decarburisation time / s 500 400 300 Temperature / °C
16
Temperature Ae3' T' o x Carbon in austenite
18
Growth is diffusionless.
Strain energy must be accounted for.
19
Takahashi and Bhadeshia
Carbon supersaturated plate Carbon diffusion into Carbon diffusion into austenite austenite and carbide precipitation in ferrite Carbide precipitation from austenite UPPER BAINITE LOWER BAINITE (High Temperature) (Low Temperature) Takahashi and Bhadeshia
21
Oka and Okamoto
22
Ohmori and Honeycombe
24
T h G N
25
Each point represents a different steel
Nucleation function G N Each point represents a different steel Bhadeshia, 1981
26
The nucleation of bainite must involve the partitioning of carbon
Why does the required free energy vary linearly with T?
27
hexagonal close-packed cubic close-packed
Christian, 1951
28
Brooks, Loretto and Smallman, 1979
29
Olson & Cohen, 1976
33
Nucleation of bainite must involve the partitioning of carbon.
Mechanism of nucleation is otherwise identical to that of martensite.
34
Fe-2Si-3Mn-C wt% 800 B 600 Temperature / K 400 M 200 0.2 0.4 0.6 0.8 1
0.2 0.4 0.6 0.8 1 1.2 1.4 Carbon / wt%
35
Fe-2Si-3Mn-C wt% 1.E+08 1 month Time / s 1.E+04 1.E+00 0.5 1 1.5
1 year 1 month Time / s 1.E+04 1.E+00 0.5 1 1.5 Carbon / wt%
36
wt% Low transformation temperature Bainitic hardenability
Reasonable transformation time Elimination of cementite Austenite grain size control Avoidance of temper embrittlement wt%
37
Homogenisation Austenitisation Isothermal transformation Temperature
1200 o C 2 days 1000 o C 15 min Temperature Air 125 o C - 325 o C slow cooling hours - months cooling Quench Time
39
g g a a a Caballero, Mateo, Bhadeshia 200 Å
40
Low temperature transformation: 0.25 T/Tm
Fine microstructure: nm thick plates Harder than most martensites (710 HV) Carbide-free Designed using theory alone
41
g g a a a Very strong Huge uniform ductility No deformation
No rapid cooling No residual stresses a Cheap Uniform in very large sections a 200 Å
42
Stress / GPa Velocity km s-1 Hammond and Cross, 2004
43
“more serious battlefield threats”
44
ballistic mass efficiency
consider unit area of armour
48
Caballero, Mateo, Bhadeshia
49
Caballero, Mateo, Bhadeshia
51
Sherif, 2005, Ph.D. thesis, Cambridge
52
Below percolation threshold
Above percolation threshold
53
Geometrical percolation threshold of overlapping ellipsoids
55
0.4 C 2 Si 3 Mn wt% 1 µm
56
Very poor toughness!
57
50 µm
58
stress transfer length
Fe-1C-1.5Si…… wt% periodic cracking stress transfer length Chatterjee & Bhadeshia, 2005
60
Carbide-free alloys wt %
62
Impact Energy Charpy impact / J Temperature / °C Test temperature / °C
10 20 30 40 50 60 70 0.4C-3Mn-2Si 0.4C-4Ni -2Si 0.2C-3Mn-2Si Charpy impact / J 200 100 -100 -200 Temperature / °C Test temperature / °C
64
kilocycles to Crack Initiation
Pearlite Martensite Bainite 1200 1000 800 600 400 200 kilocycles to Crack Initiation Yates, Jerath
65
Yates, Jerath
66
U.K.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.