Download presentation
Presentation is loading. Please wait.
1
Eigenvalues: p1=-4.526, p2,3=-0.4993±2.7883i, p4=-0.4753
2.1 Step Input Response: Roots([ ]) Eigenvalues: p1=-4.526, p2,3= ±2.7883i, p4= Steady-state response Laplace transform of unit step input Final value theorem: Stability: If the step response reaches to a constant value, the system is said to be stable. Steady State Error: ess=1-css ess=0 [r,p,k]=residue(nh,[dh,0]) r = i i 1.0000 z=r(3);a2=2*abs(z),fi2=angle(z)
2
If (Damping ratio) Different two roots (No oscillation)
Repeated roots Complex roots (Oscillatory response) (Characteristic polynomial) The form of the system response is determined by the value of Critical damping coefficient (Damping ratio)
3
For F(s)= For a control system whose output is 1 to a unit step reference input, the prototype transfer function is defined as
4
Step Response of a Second Order System:
ωn : Undamped natural frequency ξ: Damping Ratio OR clc,clear wn=1;ksi=0.2; tp=2*pi/wn;dt=tp/20;ts=tp/ksi; t=0:dt:ts;w=wn*sqrt(1-ksi^2); a=wn/w;sigma=ksi*wn;fi=-acos(ksi)-pi/2; c=a*exp(-sigma*t).*cos(w*t-fi)+1; plot(t,c)
5
tr : Rise Time td : Delay Time ts : Settling time cmax : Peak value, tmax: Peak time, cmax-css:Maksimum overshoot css : Steady State Response, 1-css : Steady State Error Re - σ Im
6
Design Criteria of Control Systems:
Stability (Control system must be stable) Steady State Error ess=1-css → 0 (Steady-state error should be zero) Sensitivity to a disturbance [css]d → 0 (Output from uncontrolled input should be zero) Overshoot , typical value % 5, damping ratio ξ=0.7 Settling time : ts (Depends on the application) Transfer Function of a PID Controller Sensitivity to disturbance At the first stage apply P control: observe the stability ess, [css]d If necessary apply PI control, it eliminates/reduces the steady state error If necessary apply PD kontrol, it reduces the overshoot Apply PID control, it is useful for all criteria
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.