Download presentation
Presentation is loading. Please wait.
Published byNigel Owens Modified over 6 years ago
1
Multistrain Epidemic Dynamics on Dynamical Networks
Francesco Pinotti Ecole Doctorale Pierre Louis de Santé Publique Institut Pierre Louis d’Epidémiologie et de Santé Publique UMR-S 1136 Supervisors: Pierre Yves Boelle, Chiara Poletto
2
Multistrain Same pathogen multiple interacting strains
S. aureus: MRSA, MSSA, variable resistance profiles Obadia et al PLoS Comp Biol 2015, Chambers & DeLeo Nature 2009 Influenza: 4 strains, continuous emergence, frequent vaccine mismatch Bedford et al nature 2015, Nelson PloS 2008 HPV: 40 strains, vaccine for 2 Burchell et al Vaccine 2006, Clifford et al Lancet 2005, Pons-Salort et al Vaccine 2013 S. pneumoniae, Gonorrhea, Malaria, Dengue, …
3
Multistrain spread at population level
Dynamics at population level Co-circulation Replenishment Rapid extinction Consequences epidemic risk outbreak size emergence of new strains
4
Modelling disease spread: compartmental models
Individuals classified according to health Susceptible Infected Example: Susceptible-Infected-Susceptible (SIS) model Compartment transitions: Infection Recovery
5
Modelling disease spread: generalization to more strains
Susceptible Infected Example: Two strains Strain 1 Strain 2 Both
6
Modelling disease spread: generalization to more strains
Susceptible Infected Example: Two strains Strain 1 Strain 2 Both Example: SIS model with competitive exclusion
7
Modelling disease spread: generalization to more strains
Susceptible Infected Example: Two strains Strain 1 Strain 2 Both Example: SIS model with competitive exclusion Other biological interactions: Cross-immunity Enhanced susceptibility
8
Modelling disease spread: contact information Contacts through which diseases spread: Face to face Sexual contact Physical contact Credits: sociopatterns.org High resolution data: Schools (Vanhems et al PLoS ONE 2013) Hospitals (Obadia et al PLoS Comp Biol 2015) Workplaces (Salathe et al PNAS 2011)
9
Modelling disease spreading: contact structure
Population modelled as a network: Individuals Nodes Contacts Links If contact data are resolved in time Dynamical networks time
10
The problem How does the dynamics of contacts affect coexistence? Or
Dominance Or Strains Population Co-dominance Which factors drive the outcome? Homogeneous mixing: biological mechanisms Castillo-Chavez et al SIAP 1999, Andreasen et al J Math Biol 1997 Static contacts: biological mechanisms & contact structure Héfresne-Dufresne & Althouse PNAS 2015, Leventhal et al Nature Comm 2015, Poletto et al PLoS Comp Biol 2013 How does the dynamics of contacts affect coexistence?
11
Case study Close proximity Interactions in a hospital: Carriage data
85025 CPIs 4 months 590 participants 5 wards Carriage data S. aureus strains (n = 114) Weekly sampling 1550 positive swabs Obadia et al PLoS Comp Biol 2015
12
First step Simulate the spread of two strains in a hospital
Prevalence Time (hours) Determine contact properties impacting: Coexistence time Prevalence Coexistence time
13
Next steps and expected results
Numerical simulations Poletto et al PLoS Comp Biol 2013 Mathematical understanding Valdano et al Phys Rev X 2015 Analyzing prevalence data Expected results 1) Biological understanding Infer Prevalence data Strain information Contacts Biological interactions Epidemiological parameters 2) Scenario analysis Systematic characterization of possible epidemic outcome Risk of large outbreaks Risk of new strain emergence
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.