Download presentation
Presentation is loading. Please wait.
1
Chapter 11 Cell Communication
2
Overview: The Cellular Internet
Cell-to-cell communication is essential for multicellular organisms Biologists have discovered some universal mechanisms of cellular regulation The combined effects of multiple signals determine cell response For example, the dilation of blood vessels is controlled by multiple molecules Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
3
Fig. 11-1 Figure 11.1 How do the effects of Viagra (multicolored) result from its inhibition of a signaling-pathway enzyme (purple)?
4
Concept 11.1: External signals are converted to responses within the cell
5. Microbes are a window on the role of cell signaling in the evolution of life Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
5
Evolution of Cell Signaling
6. A signal transduction pathway is a series. of steps by which a signal on a cell’s surface is converted into a specific cellular response 7. Signal transduction pathways convert signals on a cell’s surface into cellular responses Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
6
Yeast cell, mating type a Yeast cell, mating type
Fig. 11-2 factor Receptor 1 Exchange of mating factors a a factor Yeast cell, mating type a Yeast cell, mating type 2 Mating a Figure 11.2 Communication between mating yeast cells New a/ cell a/ 3
7
Pathway similarities suggest that ancestral signaling molecules evolved in prokaryotes and were modified later in eukaryotes The concentration of signaling molecules allows bacteria to detect population density Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
8
1 Individual rod- shaped cells 2 Aggregation in process 3
Fig. 11-3 1 Individual rod- shaped cells 2 Aggregation in process 0.5 mm 3 Spore-forming structure (fruiting body) Figure 11.3 Communication among bacteria Fruiting bodies
9
Local and Long-Distance Signaling
Cells in a multicellular organism communicate by chemical messengers Animal and plant cells have cell junctions that directly connect the cytoplasm of adjacent cells In local signaling, animal cells may communicate by direct contact, or cell-cell recognition Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
10
Gap junctions between animal cells Plasmodesmata between plant cells
Fig. 11-4 Plasma membranes Gap junctions between animal cells Plasmodesmata between plant cells (a) Cell junctions Figure 11.4 Communication by direct contact between cells (b) Cell-cell recognition
11
In many other cases, animal cells communicate using local regulators, messenger molecules that travel only short distances In long-distance signaling, plants and animals use chemicals called hormones Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
12
Figure 11.5 Local and long-distance cell communication in animals
Local signaling Long-distance signaling Target cell Electrical signal along nerve cell triggers release of neurotransmitter Endocrine cell Blood vessel Neurotransmitter diffuses across synapse Secreting cell Secretory vesicle Hormone travels in bloodstream to target cells Local regulator diffuses through extracellular fluid Target cell is stimulated Target cell Figure 11.5 Local and long-distance cell communication in animals (a) Paracrine signaling (b) Synaptic signaling (c) Hormonal signaling
13
(a) Paracrine signaling (b) Synaptic signaling
Fig. 11-5ab Local signaling Target cell Electrical signal along nerve cell triggers release of neurotransmitter Neurotransmitter diffuses across synapse Secreting cell Secretory vesicle Figure 11.5 Local and long-distance cell communication in animals Local regulator diffuses through extracellular fluid Target cell is stimulated (a) Paracrine signaling (b) Synaptic signaling
14
Long-distance signaling
Fig. 11-5c Long-distance signaling Endocrine cell Blood vessel Hormone travels in bloodstream to target cells Figure 11.5 Local and long-distance cell communication in animals Target cell (c) Hormonal signaling
15
The Three Stages of Cell Signaling: A Preview
Earl W. Sutherland discovered how the hormone epinephrine acts on cells Sutherland suggested that cells receiving signals went through three processes: Reception Transduction Response Animation: Overview of Cell Signaling Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
16
Plasma membrane 1 Reception Receptor Signaling molecule 1
Fig EXTRACELLULAR FLUID CYTOPLASM Plasma membrane 1 1 Reception Receptor Figure 11.6 Overview of cell signaling Signaling molecule
17
Plasma membrane 1 Reception Transduction Receptor Signaling molecule 1
Fig EXTRACELLULAR FLUID CYTOPLASM Plasma membrane 1 1 Reception 2 Transduction Receptor Relay molecules in a signal transduction pathway Figure 11.6 Overview of cell signaling Signaling molecule
18
Plasma membrane 1 Reception Transduction Response Receptor Activation
Fig EXTRACELLULAR FLUID CYTOPLASM Plasma membrane 1 Reception 2 Transduction 3 Response Receptor Activation of cellular response Relay molecules in a signal transduction pathway Figure 11.6 Overview of cell signaling Signaling molecule
19
Most signal receptors are plasma membrane proteins
Concept 11.2: Reception: A signal molecule binds to a receptor protein, causing it to change shape The binding between a signal molecule (ligand) and receptor is highly specific A shape change in a receptor is often the initial transduction of the signal Most signal receptors are plasma membrane proteins Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
20
Receptors in the Plasma Membrane
Most water-soluble signal molecules bind to specific sites on receptor proteins in the plasma membrane There are three main types of membrane receptors: G protein-coupled receptors Receptor tyrosine kinases Ion channel receptors Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
21
A G protein-coupled receptor is a plasma membrane receptor that works with the help of a G protein
The G protein acts as an on/off switch: If GDP is bound to the G protein, the G protein is inactive Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
22
Signaling-molecule binding site
Fig. 11-7a Signaling-molecule binding site Figure 11.7 Membrane receptors—G protein-coupled receptors, part 1 Segment that interacts with G proteins G protein-coupled receptor
23
Figure 11.7 Membrane receptors—G protein-coupled receptors, part 2
Fig. 11-7b Plasma membrane G protein-coupled receptor Inactive enzyme Activated receptor Signaling molecule GDP G protein (inactive) Enzyme GDP GTP CYTOPLASM 1 2 Activated enzyme Figure 11.7 Membrane receptors—G protein-coupled receptors, part 2 GTP GDP P i Cellular response 3 4
24
Receptor tyrosine kinases are membrane receptors that attach phosphates to tyrosines
A receptor tyrosine kinase can trigger multiple signal transduction pathways at once Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
25
Fully activated receptor tyrosine kinase
Fig. 11-7c Signaling molecule (ligand) Ligand-binding site Signaling molecule Helix Tyr Tyr Tyrosines Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Receptor tyrosine kinase proteins Dimer CYTOPLASM 1 2 Activated relay proteins Figure 11.7 Membrane receptors—receptor tyrosine kinases Cellular response 1 Tyr Tyr P Tyr Tyr P Tyr Tyr P P Tyr Tyr P Tyr Tyr P Tyr Tyr P P Cellular response 2 Tyr Tyr P Tyr Tyr P Tyr P Tyr P 6 ATP 6 ADP Activated tyrosine kinase regions Fully activated receptor tyrosine kinase Inactive relay proteins 3 4
26
A ligand-gated ion channel receptor acts as a gate when the receptor changes shape
When a signal molecule binds as a ligand to the receptor, the gate allows specific ions, such as Na+ or Ca2+, through a channel in the receptor Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
27
1 Signaling molecule (ligand) Gate closed Ions Plasma membrane
Fig. 11-7d 1 Signaling molecule (ligand) Gate closed Ions Plasma membrane Ligand-gated ion channel receptor 2 Gate open Cellular response Figure 11.7 Membrane receptors—ion channel receptors 3 Gate closed
28
Intracellular Receptors
Some receptor proteins are intracellular, found in the cytosol or nucleus of target cells Small or hydrophobic chemical messengers can readily cross the membrane and activate receptors Examples of hydrophobic messengers are the steroid and thyroid hormones of animals An activated hormone-receptor complex can act as a transcription factor, turning on specific genes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
29
Hormone (testosterone) Plasma membrane Receptor protein DNA NUCLEUS
Fig Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor NUCLEUS CYTOPLASM
30
Hormone (testosterone) Plasma membrane Receptor protein Hormone-
Fig Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor NUCLEUS CYTOPLASM
31
Hormone (testosterone) Plasma membrane Receptor protein Hormone-
Fig Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor NUCLEUS CYTOPLASM
32
Hormone (testosterone) Plasma membrane Receptor protein Hormone-
Fig Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor mRNA NUCLEUS CYTOPLASM
33
Hormone (testosterone) Plasma membrane Receptor protein Hormone-
Fig Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor mRNA NUCLEUS New protein CYTOPLASM
34
Signal transduction usually involves multiple steps
Concept 11.3: Transduction: Cascades of molecular interactions relay signals from receptors to target molecules in the cell Signal transduction usually involves multiple steps Multistep pathways can amplify a signal: A few molecules can produce a large cellular response Multistep pathways provide more opportunities for coordination and regulation of the cellular response Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
35
Signal Transduction Pathways
The molecules that relay a signal from receptor to response are mostly proteins Like falling dominoes, the receptor activates another protein, which activates another, and so on, until the protein producing the response is activated At each step, the signal is transduced into a different form, usually a shape change in a protein Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
36
Protein Phosphorylation and Dephosphorylation
In many pathways, the signal is transmitted by a cascade of protein phosphorylations Protein kinases transfer phosphates from ATP to protein, a process called phosphorylation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
37
Protein phosphatases remove the phosphates from proteins, a process called dephosphorylation
This phosphorylation and dephosphorylation system acts as a molecular switch, turning activities on and off Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
38
Phosphorylation cascade
Fig. 11-9 Signaling molecule Receptor Activated relay molecule Inactive protein kinase 1 Active protein kinase 1 Inactive protein kinase 2 ATP Phosphorylation cascade ADP Active protein kinase 2 P PP P i Figure 11.9 A phosphorylation cascade Inactive protein kinase 3 ATP ADP Active protein kinase 3 P PP P i Inactive protein ATP ADP P Active protein Cellular response PP P i
39
Small Molecules and Ions as Second Messengers
The extracellular signal molecule that binds to the receptor is a pathway’s “first messenger” Second messengers are small, nonprotein, water-soluble molecules or ions that spread throughout a cell by diffusion Second messengers participate in pathways initiated by G protein-coupled receptors and receptor tyrosine kinases Cyclic AMP and calcium ions are common second messengers Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
40
Cyclic AMP (cAMP) is one of the most widely used second messengers
Adenylyl cyclase, an enzyme in the plasma membrane, converts ATP to cAMP in response to an extracellular signal Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
41
Fig. 11-10 Figure 11.10 Cyclic AMP Adenylyl cyclase Phosphodiesterase
Pyrophosphate P P i ATP cAMP AMP Figure Cyclic AMP
42
Many signal molecules trigger formation of cAMP
Other components of cAMP pathways are G proteins, G protein-coupled receptors, and protein kinases cAMP usually activates protein kinase A, which phosphorylates various other proteins Further regulation of cell metabolism is provided by G-protein systems that inhibit adenylyl cyclase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
43
First messenger Adenylyl cyclase G protein GTP G protein-coupled
Fig First messenger Adenylyl cyclase G protein G protein-coupled receptor GTP ATP Second messenger cAMP Figure cAMP as second messenger in a G-protein-signaling pathway Protein kinase A Cellular responses
44
Calcium Ions and Inositol Triphosphate (IP3)
Calcium ions (Ca2+) act as a second messenger in many pathways Calcium is an important second messenger because cells can regulate its concentration Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
45
EXTRACELLULAR FLUID Plasma membrane Ca2+ pump ATP Mitochondrion
Fig EXTRACELLULAR FLUID Plasma membrane Ca2+ pump ATP Mitochondrion Nucleus CYTOSOL Ca2+ pump Endoplasmic reticulum (ER) Figure The maintenance of calcium ion concentrations in an animal cell Ca2+ pump ATP Key High [Ca2+] Low [Ca2+]
46
Animation: Signal Transduction Pathways
A signal relayed by a signal transduction pathway may trigger an increase in calcium in the cytosol Pathways leading to the release of calcium involve inositol triphosphate (IP3) and diacylglycerol (DAG) as additional second messengers Animation: Signal Transduction Pathways Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
47
EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein
Fig EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein DAG GTP G protein-coupled receptor PIP2 Phospholipase C IP3 (second messenger) IP3-gated calcium channel Figure Calcium and IP3 in signaling pathways Endoplasmic reticulum (ER) Ca2+ CYTOSOL
48
EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein
Fig EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein DAG GTP G protein-coupled receptor PIP2 Phospholipase C IP3 (second messenger) IP3-gated calcium channel Figure Calcium and IP3 in signaling pathways Endoplasmic reticulum (ER) Ca2+ Ca2+ (second messenger) CYTOSOL
49
EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein
Fig EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein DAG GTP G protein-coupled receptor PIP2 Phospholipase C IP3 (second messenger) IP3-gated calcium channel Figure Calcium and IP3 in signaling pathways Endoplasmic reticulum (ER) Various proteins activated Cellular responses Ca2+ Ca2+ (second messenger) CYTOSOL
50
Concept 11.4: Response: Cell signaling leads to regulation of transcription or cytoplasmic activities The cell’s response to an extracellular signal is sometimes called the “output response” Figure Nuclear responses to a signal: the activation of a specific gene by a growth factor Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
51
Nuclear and Cytoplasmic Responses
Ultimately, a signal transduction pathway leads to regulation of one or more cellular activities The response may occur in the cytoplasm or may involve action in the nucleus Many signaling pathways regulate the synthesis of enzymes or other proteins, usually by turning genes on or off in the nucleus The final activated molecule may function as a transcription factor Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
52
Growth factor Reception Receptor Phosphorylation cascade Transduction
Fig Growth factor Reception Receptor Phosphorylation cascade Transduction CYTOPLASM Inactive transcription factor Active transcription factor Figure Nuclear responses to a signal: the activation of a specific gene by a growth factor Response P DNA Gene NUCLEUS mRNA
53
Other pathways regulate the activity of enzymes
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
54
Glucose-1-phosphate (108 molecules)
Fig Reception Binding of epinephrine to G protein-coupled receptor (1 molecule) Transduction Inactive G protein Active G protein (102 molecules) Inactive adenylyl cyclase Active adenylyl cyclase (102) ATP Cyclic AMP (104) Inactive protein kinase A Active protein kinase A (104) Figure Cytoplasmic response to a signal: the stimulation of glycogen breakdown by epinephrine Inactive phosphorylase kinase Active phosphorylase kinase (105) Inactive glycogen phosphorylase Active glycogen phosphorylase (106) Response Glycogen Glucose-1-phosphate (108 molecules)
55
Signaling pathways can also affect the physical characteristics of a cell, for example, cell shape
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
56
RESULTS CONCLUSION Fig. 11-16
Wild-type (shmoos) ∆Fus3 ∆formin CONCLUSION Mating factor 1 Shmoo projection forming G protein-coupled receptor Formin P Fus3 Actin subunit Figure How do signals induce directional cell growth in yeast? GTP P GDP 2 Phosphory- lation cascade Formin Formin P 4 Microfilament Fus3 Fus3 P 5 3
57
Wild-type (shmoos) ∆Fus3 ∆formin RESULTS Fig. 11-16a
Figure How do signals induce directional cell growth in yeast? Wild-type (shmoos) ∆Fus3 ∆formin
58
CONCLUSION Mating factor Shmoo projection forming G protein-coupled
Fig b CONCLUSION Mating factor 1 Shmoo projection forming G protein-coupled receptor Formin P Fus3 Actin subunit GTP P GDP 2 Phosphory- lation cascade Formin Formin P 4 Figure How do signals induce directional cell growth in yeast? Microfilament Fus3 Fus3 P 5 3
59
Fine-Tuning of the Response
Multistep pathways have two important benefits: Amplifying the signal (and thus the response) Contributing to the specificity of the response Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
60
Enzyme cascades amplify the cell’s response
Signal Amplification Enzyme cascades amplify the cell’s response At each step, the number of activated products is much greater than in the preceding step Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
61
The Specificity of Cell Signaling and Coordination of the Response
Different kinds of cells have different collections of proteins These different proteins allow cells to detect and respond to different signals Even the same signal can have different effects in cells with different proteins and pathways Pathway branching and “cross-talk” further help the cell coordinate incoming signals Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
62
Fig. 11-17 Figure 11.17 The specificity of cell signaling Signaling
molecule Receptor Relay molecules Response 1 Response 2 Response 3 Cell A. Pathway leads to a single response. Cell B. Pathway branches, leading to two responses. Figure The specificity of cell signaling Activation or inhibition Response 4 Response 5 Cell C. Cross-talk occurs between two pathways. Cell D. Different receptor leads to a different response.
63
Cell B. Pathway branches, leading to two responses.
Fig a Signaling molecule Receptor Relay molecules Figure The specificity of cell signaling Response 1 Response 2 Response 3 Cell A. Pathway leads to a single response. Cell B. Pathway branches, leading to two responses.
64
Cell C. Cross-talk occurs between two pathways.
Fig b Activation or inhibition Figure The specificity of cell signaling Response 4 Response 5 Cell C. Cross-talk occurs between two pathways. Cell D. Different receptor leads to a different response.
65
Signaling Efficiency: Scaffolding Proteins and Signaling Complexes
Scaffolding proteins are large relay proteins to which other relay proteins are attached Scaffolding proteins can increase the signal transduction efficiency by grouping together different proteins involved in the same pathway Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
66
Signaling Plasma molecule membrane Receptor Three different protein
Fig Signaling molecule Plasma membrane Receptor Three different protein kinases Figure A scaffolding protein Scaffolding protein
67
Termination of the Signal
Inactivation mechanisms are an essential aspect of cell signaling When signal molecules leave the receptor, the receptor reverts to its inactive state Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
68
Apoptosis is programmed or controlled cell suicide
Concept 11.5: Apoptosis (programmed cell death) integrates multiple cell-signaling pathways Apoptosis is programmed or controlled cell suicide A cell is chopped and packaged into vesicles that are digested by scavenger cells Apoptosis prevents enzymes from leaking out of a dying cell and damaging neighboring cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
69
Fig Figure Apoptosis of human white blood cells 2 µm
70
Apoptosis in the Soil Worm Caenorhabditis elegans
Apoptosis is important in shaping an organism during embryonic development The role of apoptosis in embryonic development was first studied in Caenorhabditis elegans In C. elegans, apoptosis results when specific proteins that “accelerate” apoptosis override those that “put the brakes” on apoptosis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
71
Figure 11.20 Molecular basis of apoptosis in C. elegans
Ced-9 protein (active) inhibits Ced-4 activity Mitochondrion Ced-4 Ced-3 Receptor for death- signaling molecule Inactive proteins (a) No death signal Ced-9 (inactive) Cell forms blebs Death- signaling molecule Figure Molecular basis of apoptosis in C. elegans Active Ced-4 Active Ced-3 Other proteases Nucleases Activation cascade (b) Death signal
72
Ced-9 protein (active) inhibits Ced-4 activity Mitochondrion Ced-4
Fig a Ced-9 protein (active) inhibits Ced-4 activity Mitochondrion Figure Molecular basis of apoptosis in C. elegans Ced-4 Ced-3 Receptor for death- signaling molecule Inactive proteins (a) No death signal
73
Ced-9 (inactive) Cell forms blebs Death- signaling molecule Active
Fig b Ced-9 (inactive) Cell forms blebs Death- signaling molecule Active Ced-4 Active Ced-3 Other proteases Nucleases Figure Molecular basis of apoptosis in C. elegans Activation cascade (b) Death signal
74
Apoptotic Pathways and the Signals That Trigger Them
Caspases are the main proteases (enzymes that cut up proteins) that carry out apoptosis Apoptosis can be triggered by: An extracellular death-signaling ligand DNA damage in the nucleus Protein misfolding in the endoplasmic reticulum Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
75
Apoptosis evolved early in animal evolution and is essential for the development and maintenance of all animals Apoptosis may be involved in some diseases (for example, Parkinson’s and Alzheimer’s); interference with apoptosis may contribute to some cancers Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
76
Interdigital tissue 1 mm Fig. 11-21
Figure Effect of apoptosis during paw development in the mouse
77
Reception Transduction Response Receptor Activation of cellular
Fig. 11-UN1 1 Reception 2 Transduction 3 Response Receptor Activation of cellular response Relay molecules Signaling molecule
78
Fig. 11-UN2
79
You should now be able to:
Describe the nature of a ligand-receptor interaction and state how such interactions initiate a signal-transduction system Compare and contrast G protein-coupled receptors, tyrosine kinase receptors, and ligand-gated ion channels List two advantages of a multistep pathway in the transduction stage of cell signaling Explain how an original signal molecule can produce a cellular response when it may not even enter the target cell Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
80
Define the term second messenger; briefly describe the role of these molecules in signaling pathways
Explain why different types of cells may respond differently to the same signal molecule Describe the role of apoptosis in normal development and degenerative disease in vertebrates Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.