Download presentation
Presentation is loading. Please wait.
Published byJesse Floyd Modified over 6 years ago
1
A Novel Reversible Data Embedding Scheme Using Chinese Remainder Theorem for Vector Quantizer Index
Chair Professor Chin-Chen Chang Feng Chia University National Chung Cheng University National Tsing Hua University
2
Outline Introduction Proposed scheme Experimental results Conclusions
3
Introduction (1/5) Information hiding Sender Receiver
Compression code: … Color palette image Reconstructed image Compression code … Secret data: 011 Secret data: 011
4
Introduction (2/5) VQ Encoding Index table Original Image Codebook …
(120,155,…,80) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (90,135,…,120) (100,125,…,150) … Index table Original Image (49,117,…,25) (50,42,…,98) (20,65,…,110) Codebook
5
Introduction (3/5) Principal component analysis (PCA) Ex: 2-dimension
. X1 X2 D2 D1
6
Introduction (4/5) 鬼谷先生留下的一道算术题: “今有物,不知数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”
明万历年间大商人程大位,以一首诗的形式对答此题: “三人同行七十稀,五树梅花廿一枝,七子团圆整半月,除百零五便得知”
7
Introduction (5/5) Chinese remainder theorem (CRT) How to evaluate c?
Ex. Let be integers, There exists an integer c, such that: if gcd (mi, mj)=1, for all i ≠ j How to evaluate c?
8
The proposed scheme (1/6)
VQ codebook sorted codebook codebook reserved 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (49,117,…,25) (20,65,…,110) 1 2 3 4 5 6 7 8 9 10 11 12 13 (50,42,…,98) (49,117,…,25) (20,65,…,110) (50,42,…,98) indicator … … (120,155,…,80) (90,135,…,120) (90,135,…,120) (100,125,…,150) (100,125,…,150) (120,155,…,80) reserved PCA
9
The proposed scheme (2/6)
Chinese remainder theorem (CRT) p=5, q=7 secret : ( )2 codeword pair (23, 28) Input: p, q, s, Ca , Cb Output: c, d p=5 (331)p s = 3 d = |Ca - Cb| = | | = 5 c = 3 mod 5 c = 5 mod 7 0 ≤ d < q
10
The proposed scheme (3/6)
codeword pair (Ca , Cb ) Case-A: ( Ca < Cb ) and ( Cb + c < 255 ) and ( d < q ) Case-B: (Cb < Ca ) and ( Ca + c < 255 ) and ( d < q ) Case-C: Otherwise
11
The proposed scheme (4/6)
How to convert (Ca, Cb) to (Ca’, Cb’) Cb Ca 23 28 28 28 d =5 s = 3 p = 5, q = 7 d = 5 Index table +33 61 Cb’ c = 33 Ca’ Stego-index table
12
The proposed scheme (4/6)
How to convert (Ca’, Cb’) to (Ca, Cb) Cb’ Ca’ 28 28 28 28 61 c = 33 p = 5, q = 7 c = 33 Stego-index table d = c mod q = 33 mod 7 = 5 s = c mod p = 33 mod 5 = 3 Cb d =5 , s = 3 Ca Ca = Cb – d = 28 – 5 = 23 Index table 23
13
The proposed scheme (6/6)
Case-C: Otherwise (∵ d = | | = 12 > q) Cb indicator : codeword ‘0’ and codeword ‘255’ Ca 35 23 (00) Ca’= ‘0’ || Ca Cb’ = ‘0’ || Cb (01) Ca’= ‘0’ || Ca Cb’ = ‘255’ || Cb (10) Ca’= ‘255’ || Ca Cb’ = ‘0’ || Cb (11)2 Ca’= ‘255’ || Ca Cb’ = ‘255’ || Cb s = Index table Embed: s = 00 Cb’ Ca’= indicator + Ca Cb’= indicator + Cb Ca’= ‘0’ + 35 Cb’= ‘0’ + 23 Ca’ ‘0’+35 ‘0’+23 Extract : If ( indicator( Ca’ ) = ‘0’ ) or ( indicator( Ca’ ) = ‘255’ ) Extract and Restore Ca = 35 Cb = 23 Stego-index table s: 00 +
14
Number of index pairs judged as Case-A or Case-B
Experimental results Total number of index pairs = 8192 Values of ( p, q ) Images Number of index pairs judged as Case-A or Case-B (5, 7) Lena 4524 (>55%) Baboon 4673 (>57%) Pepper 4749 (>57%) Toys 5102 (>62%) (5, 11) 4865 (>59%) 4796 (>58%) 4870 (>58%) 5093 (>62%)
15
Conclusions A new data embedding scheme with CRT is proposed for VQ index table The proposed scheme achieves the goal of hiding secret bits into index value while reversible
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.