Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chair Professor Chin-Chen Chang Feng Chia University

Similar presentations


Presentation on theme: "Chair Professor Chin-Chen Chang Feng Chia University"— Presentation transcript:

1 A Novel Reversible Data Embedding Scheme Using Chinese Remainder Theorem for Vector Quantizer Index
Chair Professor Chin-Chen Chang Feng Chia University National Chung Cheng University National Tsing Hua University

2 Outline Introduction Proposed scheme Experimental results Conclusions

3 Introduction (1/5) Information hiding Sender Receiver
Compression code: … Color palette image Reconstructed image Compression code … Secret data: 011 Secret data: 011

4 Introduction (2/5) VQ Encoding Index table Original Image Codebook …
(120,155,…,80) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (90,135,…,120) (100,125,…,150) Index table Original Image (49,117,…,25) (50,42,…,98) (20,65,…,110) Codebook

5 Introduction (3/5) Principal component analysis (PCA) Ex: 2-dimension
. X1 X2 D2 D1

6 Introduction (4/5) 鬼谷先生留下的一道算术题: “今有物,不知数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”
明万历年间大商人程大位,以一首诗的形式对答此题: “三人同行七十稀,五树梅花廿一枝,七子团圆整半月,除百零五便得知”

7 Introduction (5/5) Chinese remainder theorem (CRT) How to evaluate c?
Ex. Let be integers, There exists an integer c, such that: if gcd (mi, mj)=1, for all i ≠ j How to evaluate c?

8 The proposed scheme (1/6)
VQ codebook sorted codebook codebook reserved 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (49,117,…,25) (20,65,…,110) 1 2 3 4 5 6 7 8 9 10 11 12 13 (50,42,…,98) (49,117,…,25) (20,65,…,110) (50,42,…,98) indicator (120,155,…,80) (90,135,…,120) (90,135,…,120) (100,125,…,150) (100,125,…,150) (120,155,…,80) reserved PCA

9 The proposed scheme (2/6)
Chinese remainder theorem (CRT) p=5, q=7 secret : ( )2 codeword pair (23, 28) Input: p, q, s, Ca , Cb Output: c, d p=5 (331)p s = 3 d = |Ca - Cb| = | | = 5 c = 3 mod 5 c = 5 mod 7 0 ≤ d < q

10 The proposed scheme (3/6)
codeword pair (Ca , Cb ) Case-A: ( Ca < Cb ) and ( Cb + c < 255 ) and ( d < q ) Case-B: (Cb < Ca ) and ( Ca + c < 255 ) and ( d < q ) Case-C: Otherwise

11 The proposed scheme (4/6)
How to convert (Ca, Cb) to (Ca’, Cb’) Cb Ca 23 28 28 28 d =5 s = 3 p = 5, q = 7 d = 5 Index table +33 61 Cb’ c = 33 Ca’ Stego-index table

12 The proposed scheme (4/6)
How to convert (Ca’, Cb’) to (Ca, Cb) Cb’ Ca’ 28 28 28 28 61 c = 33 p = 5, q = 7 c = 33 Stego-index table d = c mod q = 33 mod 7 = 5 s = c mod p = 33 mod 5 = 3 Cb d =5 , s = 3 Ca Ca = Cb – d = 28 – 5 = 23 Index table 23

13 The proposed scheme (6/6)
Case-C: Otherwise (∵ d = | | = 12 > q) Cb indicator : codeword ‘0’ and codeword ‘255’ Ca 35 23 (00) Ca’= ‘0’ || Ca Cb’ = ‘0’ || Cb (01) Ca’= ‘0’ || Ca Cb’ = ‘255’ || Cb (10) Ca’= ‘255’ || Ca Cb’ = ‘0’ || Cb (11)2 Ca’= ‘255’ || Ca Cb’ = ‘255’ || Cb s = Index table Embed: s = 00 Cb’ Ca’= indicator + Ca Cb’= indicator + Cb Ca’= ‘0’ + 35 Cb’= ‘0’ + 23 Ca’ ‘0’+35 ‘0’+23 Extract : If ( indicator( Ca’ ) = ‘0’ ) or ( indicator( Ca’ ) = ‘255’ ) Extract and Restore Ca = 35 Cb = 23 Stego-index table s: 00 +

14 Number of index pairs judged as Case-A or Case-B
Experimental results Total number of index pairs = 8192 Values of ( p, q ) Images Number of index pairs judged as Case-A or Case-B (5, 7) Lena 4524 (>55%) Baboon 4673 (>57%) Pepper 4749 (>57%) Toys 5102 (>62%) (5, 11) 4865 (>59%) 4796 (>58%) 4870 (>58%) 5093 (>62%)

15 Conclusions A new data embedding scheme with CRT is proposed for VQ index table The proposed scheme achieves the goal of hiding secret bits into index value while reversible


Download ppt "Chair Professor Chin-Chen Chang Feng Chia University"

Similar presentations


Ads by Google