Download presentation
Presentation is loading. Please wait.
1
15.7 Maximum and Minimum Values
MAT 3238 Vector Calculus 15.7 Maximum and Minimum Values
2
Homework Both written and WA HW due Thursday.
3
One Variable Vs Two variables
4
Local Maximum
5
Critical Numbers, Critical Points
𝑦 𝑥 𝑦=𝑓 𝑥
6
Fermat’s Theorem 𝑦 𝑥 𝑦=𝑓 𝑥
7
The Second Derivative Test
8
The Second Derivative Test
𝑦 𝑦=𝑓 𝑥 𝑥 𝑐 Concave up at 𝑥=𝑐
9
Quote When You Realize You’ve Hit Rock Bottom, There’s Only One Way To Go, And That’s Up!
10
Quote When You Realize You’ve Hit Rock Bottom, There’s Only One Way To Go, And That’s Up! But along which Direction?
11
The Second Derivative Test
𝑦 𝑦=𝑓 𝑥 𝑥 𝑐 Concave up at 𝑥=𝑐
12
The Second Derivative Test
13
The Second Derivative Test
Possible LMM or Inflection Point
14
The Second Derivative Test
15
Example 1
16
Example 1
17
SageMath Codes var('x,y') plot3d(x*y*(1-x-y),(x,-1,1),(y,-1,1))
18
Absolute Minimum, Maximum
𝑦=𝑓(𝑥) on [𝑎,𝑏] Closed Interval Method 𝑦 𝑦=𝑓 𝑥 𝑥 𝑏 𝑎
19
Absolute Minimum, Maximum
𝑧=𝑓(𝑥,𝑦) on a closed and bounded region 𝐷
20
Example 2
21
Example 2
22
Example 2 1 𝑦 𝑥 𝐿 1 𝐿 2 𝐿 3 𝐿 4 𝐷
23
Example 2 1 𝑦 𝑥 𝐿 1 𝐿 2 𝐿 3 𝐿 4 𝐷
24
Example 2 1 𝑦 𝑥 𝐿 1 𝐿 2 𝐿 3 𝐿 4 𝐷
25
Example 2 1 𝑦 𝑥 𝐿 1 𝐿 2 𝐿 3 𝐿 4 𝐷
26
Example 2 1 𝑦 𝑥 𝐿 1 𝐿 2 𝐿 3 𝐿 4 𝐷
27
-End- For Spring 2018
28
Things to Do Next Year Embed a SageMath Webpage
29
Diagrams 𝑎 𝐼 𝑦 𝑥 𝑦=𝑓 𝑥
30
Diagrams 1 𝑦 𝑥 𝐿 1 𝐿 2 𝐿 3 𝐿 4 𝐷
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.