Presentation is loading. Please wait.

Presentation is loading. Please wait.

Drawing Quadratic Curves – Part 2

Similar presentations


Presentation on theme: "Drawing Quadratic Curves – Part 2"β€” Presentation transcript:

1 Drawing Quadratic Curves – Part 2
Slideshow 28, Mathematics Mr. Richard Sasaki

2 Objectives Learn how to write an equation 𝑦=π‘Ž π‘₯ 2 +𝑏π‘₯+𝑐 in the form 𝑦=π‘Ž π‘₯βˆ’β„Ž 2 +π‘˜ Be able to draw graphs in the form 𝑦=π‘Ž π‘₯ 2 +𝑏π‘₯+𝑐 when considering the vertex (β„Ž, π‘˜)

3 Algebra Manipulation If we write 𝑦=π‘Ž π‘₯ 2 +𝑏π‘₯+𝑐 in the form 𝑦=π‘Ž π‘₯βˆ’β„Ž 2 +π‘˜ (vertex form), we know what the vertex is because its coordinates are in the form . (β„Ž, π‘˜) Don’t remove the factor of π‘₯ too! Example Write 𝑦=2 π‘₯ 2 +16π‘₯+30 in vertex form. π‘¦βˆ’30=2 π‘₯ 2 +16π‘₯ 1. Subtract both sides by 30. π‘¦βˆ’30=2( π‘₯ 2 +8π‘₯) 2. Factorise the right by the π‘₯ 2 coefficient. 1 2 βˆ™8 2 = 16 3. Halve and then square the π‘₯ coefficient. 4. Add and subtract 16 to produce a perfect square. π‘¦βˆ’30=2( π‘₯ 2 +8π‘₯+16βˆ’16) π‘¦βˆ’30=2 π‘₯+4 2 βˆ’16 π‘¦βˆ’30=2 βˆ™ π‘₯+4 2 βˆ’2βˆ™16 5. Expand the outer bracket and rewrite. π‘¦βˆ’30=2 π‘₯+4 2 βˆ’32 ⇒𝑦=2 π‘₯+4 2 βˆ’2

4 Algebra Manipulation Let’s do one more example! Example
Write 𝑦=3 π‘₯ 2 βˆ’30π‘₯+78 in vertex form and write down its vertex. π‘¦βˆ’78=3 π‘₯ 2 βˆ’30π‘₯ 1. Subtract both sides by 78. π‘¦βˆ’78=3( π‘₯ 2 βˆ’10π‘₯) 2. Factorise the right by the π‘₯ 2 coefficient. 3. Calculate half of the π‘₯ coefficient, then square it. 1 2 βˆ™10 2 = 25 4. Add and subtract 25 to produce a perfect square. π‘¦βˆ’78=3( π‘₯ 2 βˆ’10π‘₯+25βˆ’25) π‘¦βˆ’78=3 π‘₯βˆ’5 2 βˆ’25 5. Expand the outer bracket and rewrite. π‘¦βˆ’78=3 βˆ™ π‘₯βˆ’5 2 βˆ’3βˆ™25 π‘¦βˆ’78=3 π‘₯βˆ’5 2 βˆ’75 ⇒𝑦=3 π‘₯βˆ’ The vertex is at . (5, 3)

5 𝑦=4 π‘₯ 2 βˆ’3 𝑦=6 π‘₯ 2 +12π‘₯+3 𝑦=4 π‘₯ 2 +16π‘₯+15 𝑦=βˆ’2 π‘₯ 2 βˆ’12π‘₯βˆ’22 𝑦=3 π‘₯ 𝑦=2 π‘₯+5 2 βˆ’1 𝑦= π‘₯+4 2 βˆ’3 𝑦= 4 π‘₯βˆ’ 𝑦= 6 π‘₯βˆ’1 2 βˆ’9 𝑦= 2 π‘₯+2 2 βˆ’7

6 Answers - Hard 𝑦=4 π‘₯βˆ’6 2 +3 𝑦=βˆ’ π‘₯+1 2 +2 𝑦=2 π‘₯+8 2 βˆ’52 (6, 3) (βˆ’1, 2)
𝑦=4 π‘₯βˆ’ 𝑦=βˆ’ π‘₯ 𝑦=2 π‘₯+8 2 βˆ’52 (6, 3) (βˆ’1, 2) (βˆ’8, βˆ’52) Minimum Maximum Minimum 𝑦=3 π‘₯βˆ’11 2 βˆ’100 𝑦=βˆ’2 π‘₯ 𝑦=7 π‘₯βˆ’5 2 βˆ’210 (11, βˆ’100) (βˆ’5, 20) (5, βˆ’210) Minimum Maximum Minimum 𝑦=βˆ’3 π‘₯ βˆ’2 𝑦=2 π‘₯βˆ’ (0.5, 3) (βˆ’ 1 2 , βˆ’2) Minimum Maximum

7 Drawing Parabolae from Quadratics
If we are able to write a quadratic 𝑦=π‘Ž π‘₯ 2 +𝑏π‘₯+𝑐 in the form 𝑦=π‘Ž π‘₯βˆ’β„Ž 2 +π‘˜, we can easily draw it! Example Write 𝑦=2 π‘₯ 2 βˆ’4π‘₯+4 in vertex form and hence, draw it. π‘¦βˆ’4=2 π‘₯ 2 βˆ’4π‘₯ βˆ’1 1 3 𝒙 𝑦 2 π‘¦βˆ’4=2( π‘₯ 2 βˆ’2π‘₯) 10 4 2 4 10 π‘¦βˆ’4=2( π‘₯ 2 βˆ’2π‘₯+1βˆ’1) π‘¦βˆ’4=2( π‘₯βˆ’1 2 βˆ’1) We call this the parabola’s . π‘¦βˆ’4=2 π‘₯βˆ’1 2 βˆ’2 𝑦=2 π‘₯βˆ’ The line takes place at axis of symmetry π‘₯=β„Ž Vertex: (1, 2)

8 Answers (Easy) 𝑦=2 π‘₯βˆ’ 2 3 𝑦= π‘₯βˆ’6 2 βˆ’5 6 βˆ’5

9 Answers (Hard) 𝑦= π‘₯βˆ’ βˆ’2 2 βˆ’2 𝑦=βˆ’ π‘₯βˆ’ βˆ’8 4 βˆ’8

10 Drawing Parabolae from Quadratics
Do you know another way of finding the parabola 𝑦=π‘Ž π‘₯ 2 +𝑏π‘₯+𝑐? Let’s write the general form in vertex form. 𝑦=π‘Ž π‘₯+ 𝑏 2π‘Ž 2 βˆ’ 𝑏 2 4π‘Ž +𝑐 π‘¦βˆ’π‘=π‘Ž π‘₯ 2 +𝑏π‘₯ π‘¦βˆ’π‘=π‘Ž π‘₯ 2 + 𝑏π‘₯ π‘Ž 𝑦=π‘Ž π‘₯+ 𝑏 2π‘Ž 2 βˆ’ 𝑏 2 4π‘Ž + 4π‘Žπ‘ 4π‘Ž π‘¦βˆ’π‘=π‘Ž π‘₯ 2 + 𝑏π‘₯ π‘Ž + 𝑏 2π‘Ž 2 βˆ’ 𝑏 2π‘Ž 2 𝑦=π‘Ž π‘₯βˆ’ βˆ’ 𝑏 2π‘Ž π‘Žπ‘βˆ’ 𝑏 2 4π‘Ž π‘¦βˆ’π‘=π‘Ž π‘₯+ 𝑏 2π‘Ž 2 βˆ’ 𝑏 2 4 π‘Ž 2 βˆ’ 𝑏 2π‘Ž 4π‘Žπ‘βˆ’ 𝑏 2 4π‘Ž Vertex: ( , ) π‘¦βˆ’π‘=π‘Ž π‘₯+ 𝑏 2π‘Ž 2 βˆ’π‘Ž 𝑏 2 4 π‘Ž 2 β„Ž=βˆ’ 𝑏 2π‘Ž , π‘˜= 4π‘Žπ‘βˆ’ 𝑏 2 4π‘Ž

11 Using the Formulae Now we know that β„Ž=βˆ’ 𝑏 2π‘Ž and π‘˜= 4π‘Žπ‘βˆ’ 𝑏 2 4π‘Ž , we can use these to find the vertex for an expression 𝑦=π‘Ž π‘₯ 2 +𝑏π‘₯+𝑐 without having to write it in vertex form. Example Calculate where the vertex takes place for 𝑦=2 π‘₯ 2 βˆ’4π‘₯+5 without writing the expression in vertex form. β„Ž=βˆ’ 𝑏 2π‘Ž =βˆ’ βˆ’4 2βˆ™2 =1 π‘˜= 4π‘Žπ‘βˆ’ 𝑏 2 4π‘Ž = 4βˆ™2βˆ™5βˆ’ (βˆ’4) 2 4βˆ™2 = 40βˆ’16 8 =3 ∴ Vertex: (1, 3)

12 (2, βˆ’2) (5, 6) (3, 2) (βˆ’1,βˆ’8) (8, 7) (βˆ’3,βˆ’ 6) (1, 18) (4, βˆ’8) (9, 6) (25, βˆ’10)

13 Answers (4, βˆ’1) (βˆ’6, 1)


Download ppt "Drawing Quadratic Curves – Part 2"

Similar presentations


Ads by Google