Download presentation
Presentation is loading. Please wait.
1
Bellwork ~ Solve & Graph
1.) 4 < x + 2 < 10 2.) -3 < -x < -2 3.) 8 + 2x < 6 or x -2 > 13
2
Bellwork ~ Solve & Graph
1.) 4 < x + 2 < 10 4 -2 < x < 2 < x < 8 2 8
3
Bellwork ~ Solve & Graph
2.) -3 < -x < -2 -3/-1 < -x/-1 < -2/-1 3 > x > 2 2 3
4
Bellwork ~ Solve & Graph
8+ 2x < 6 8-8+2x<6-8 2x/2 < -2/2 x < -1 3x-2+2>13+2 3x > 15 3x/3 > 15/3 x > 5 -1 5
5
To be able to Solve Absolute Value Inequalities.
Today’s Objective To be able to Solve Absolute Value Inequalities.
6
Recall….. |x| = 7… To Solve this absolute value equation, we created two equations: x = and x = -7
7
Now Consider…. |x| < 7…. To solve this Absolute Value Inequality, we must also create two inequalities. x < 7 and x > -7
8
|x| < 7 x < 7 and x > -7 can be written as….
-7 < x < 7...In other words Any Number greater than -7 or less than 7 will solve the inequality |x| < 7.
9
|x| < 7 -7 < x < 7 -7 7
10
Example 1 |x + 4| < 3….Rewrite -3 < x + 4 < 3
-7 -1
11
Rewrite the following:
1.) |x - 2| < 6 2.) |2x + 4| < 2 3.) |x| < 9 1.) -6 < x - 2 < 6 2.) -2 < 2x + 4 < 2 3.) -9 < x < 9
12
Example 2 |x + 1| >2….Rewrite x+1<-2 or x+1>2 Now solve each separately…..
13
Example 2 x+1>2 x < -3 x > 1 x+1-1>2-1 x+1-1<-2-1
14
Rewrite the following:
1.) |x - 2| > 6 2.) |2x + 4| > 2 3.) |3 - x| > 9 1.)x - 2<-6 or x - 2>6 2.)2x+4<-2 or 2x+4>2 3.)3-x<-9 or 3-x>9
15
Page 313 Open your Books to Page 313
Read the Study Tip in the blue box.
16
You Solve These 1.) |x + 9| > 13 2.) |3x - 15| < 12
17
Bellwork 1/10 Rewrite, solve and graph….. 1.) |x + 9| > 13
18
1.) |x + 9| > 13 x < -22 x > 4 x + 9 > 13 x + 9 <-13
-24 4
19
2.) |3x - 15| < 12 3 < 3x < 27 3/3 < 3x/3 < 27/3
1 9
20
Rewrite the following:
1.) |x-2|<5 2.) |x+6|>2 3.) |3x - 4|>1 4.) |2x + 2| < 2
21
Rewrite the following:
1.) |x-2|<5 -5 < x-2 < 5 2.) |x+6|>2 x+6 > 2 or x+6 < -2
22
Rewrite the following:
3.) |3x - 4|>1 3x-4 > 1 or 3x-4 < -1 4.) |2x + 2| < 2 -2 < 2x+2 < 2
23
classwork Do worksheet 6.4 Homework page 316( even)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.