Presentation is loading. Please wait.

Presentation is loading. Please wait.

An Analysis of Convex Relaxations for MAP Estimation

Similar presentations


Presentation on theme: "An Analysis of Convex Relaxations for MAP Estimation"— Presentation transcript:

1 An Analysis of Convex Relaxations for MAP Estimation
M. Pawan Kumar Vladimir Kolmogorov Philip H.S. Torr Aim: To analyze Maximum a Posteriori (MAP) estimation methods based on convex relaxations Comparing Relaxations Two New SOCP Relaxations Domination For all (u,P) For at least one (u,P) All LP-S constraints SOCP-C a b a b MAP Estimation - Integer Programming Formulation Cycle ‘G’ > 4 [ -1, 1 ; 1, -1] 2 Label Vector x c d c 3 1 5 2 strictly dominates [ 5, 2 ; 2, 4] = 0 Unary Vector u A dominates B A B Va Vb = 1 Pairwise Matrix P - 3 1 a b b c c a Equivalent relaxations: A dominates B, B dominates A. Random Field Example Unary Cost = 0 LP-S = 0 SOCP-C = 0.75 #variables n = 2 #labels h = 2 A  B = ∑ Aij Bij Comparing Existing SOCP and QP Relaxations Dominated by linear cycle inequalities? Xab;ij min P  X xa;i xb;j SOCP-Q All cycle inequalities arg min xT (4u + 2P1) + P  X, subject to ∑i xa;i = 2 - h x  {-1,1}nh X = x xT Pab;ij ≥ 0 Xab;ij = infimum a b a b MAP x* Pab;ij < 0 Xab;ij = supremum Clique ‘G’ (xa;i+ xb;j)2 ≤ Xab;ij c d c (xa;i- xb;j)2 ≤ Xab;ij SOCP-MS is QP-RL SOCP-MS Muramatsu and Suzuki, 2003 Ravikumar and Lafferty, 2006 = -1/3 LP-S vs. SOCP Relaxations over Trees and Cycles a b b c c d G = (V,E) = 1/3 Linear Programming (LP) Relaxation Schlesinger, 1976 Va Vb a b a b 2 1 1 d a a c b d LP-S 1 2 1 1 xa;1 = -1/3 xa;0 = -1/3 Non-convex Constraint X = x xT x  {-1,1}nh 1 1 2 1 Dominates linear cycle inequalities Vd Vc d c d c 1 1 2 Open Questions Convex Relaxation V (Constrained Variables) 1+xa;i+xb;j+Xab;ij ≥ 0 E (Constrained Pairs) x  [-1,1]nh Random Field C Matrix Cycle inequalities vs. SOCP/QP? j Xab;ij = (2-h) xa;i Tree (SOCP-T) Even Cycle (SOCP-E) Odd Cycle (SOCP-O) Best ‘C’ for special cases? Second Order Cone Programming (SOCP) Relaxations Efficient solutions for SOCP? Non-convex Constraint X = x xT Convex Relaxation Kim and Kojima, 2000 Future Work C = U UT 50 random fields 4 neighbourhood 8 neighbourhood ||UTx||2≤ C  X LP-S dominates SOCP-T Pab;ij ≥ 0 Pab;ij ≥ 0 for one (a,b) Special Case: Edge Pab;ij ≤ 0 Pab;ij ≤ 0 for one/all (a,b) SOCP-MS/ QP-RL LP-S dominates SOCP-E LP-S dominates SOCP-O


Download ppt "An Analysis of Convex Relaxations for MAP Estimation"

Similar presentations


Ads by Google