Presentation is loading. Please wait.

Presentation is loading. Please wait.

3.4 – Linear Programming.

Similar presentations


Presentation on theme: "3.4 – Linear Programming."— Presentation transcript:

1 3.4 – Linear Programming

2 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y

3 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y

4 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y

5 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y

6 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y

7 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y

8 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y

9 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y

10 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y

11 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y

12 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y

13 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y) x – y f(x,y)

14 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y) x – y f(x,y) (0.-4) (3,5) (3,-4)

15 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y) x – y f(x,y) (0.-4) 0 – (-4) 4 (3,5) (3,-4)

16 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y) x – y f(x,y) (0.-4) 0 – (-4) 4 (3,5) 3 – 5 -2 (3,-4)

17 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y) x – y f(x,y) (0.-4) 0 – (-4) 4 (3,5) 3 – 5 -2 (3,-4) 3 – (-4) 7

18 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y) x – y f(x,y) (0.-4) 0 – (-4) 4 (3,5) 3 – 5 -2 (3,-4) 3 – (-4) 7

19 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y) x – y f(x,y) (0.-4) 0 – (-4) 4 (3,5) 3 – 5 -2 (3,-4) 3 – (-4) 7 Max of (3,-4)

20 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y) x – y f(x,y) (0.-4) 0 – (-4) 4 (3,5) 3 – 5 -2 (3,-4) 3 – (-4) 7 Max of (3,-4)

21 3.4 – Linear Programming Ex. 1 Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the max & min values of the given function for this region. y > -4 x < 3 y < 3x – 4 f(x,y) = x – y (x, y) x – y f(x,y) (0.-4) 0 – (-4) 4 (3,5) 3 – 5 -2 (3,-4) 3 – (-4) 7 Max of (3,-4) Min of (3,5)


Download ppt "3.4 – Linear Programming."

Similar presentations


Ads by Google