Download presentation
Presentation is loading. Please wait.
1
The Sine Rule
2
Trigonometry applied to triangles without right angles.
Sine and Cosine rules Trigonometry applied to triangles without right angles.
3
Introduction You have learnt to apply trigonometry to right angled triangles. A hyp adj opp
4
Now we extend our trigonometry so that we can deal with triangles which are not right angled.
5
First we introduce the following notation.
We use capital letters for the angles, and lower case letters for the sides. A a b c C B In DABC The side opposite angle A is called a. The side opposite angle B is called b. Q q p r R P In DPQR The side opposite angle P is called p. And so on
6
The sine rule Draw the perpendicular from C to meet AB at P.
Using DBPC: PC = a sinB. Using DAPC: PC = b sinA. Therefore a sinB = b sinA. Dividing by sinA and sinB gives: In the same way: Putting both results together: The proof needs some changes to deal with obtuse angles.
7
SOH/CAH/TOA can only be used for right-angled triangles.
The Sine Rule can be used for any triangle: C The sides are labelled to match their opposite angles b a A B c a sinA b sinB c sinC = = The Sine Rule:
8
A Example 1: Find the length of BC 76º c 7cm b 63º C x B a Draw arrows from the sides to the opposite angles to help decide which parts of the sine rule to use. a sinA c sinC = x sin76º 7 sin63º sin76º × = × sin76º 7 sin63º x = × sin76º x = cm
9
G 1. B 3. 2. F 53º 13 cm 41º x 8.0 35.3 5.5 x A 62º x 28º 130º D E 5 cm 63º 76º C H 26 mm I 4. 10.7 5. 5.2 cm x 61º R 6. P 37º 66º 57º 10 m 35º x 5.2 77º 62º Q 12 cm 6 km 85º 7. x 6.6 65º 86º x 6.9
10
Remember: Draw a diagram Label the sides Set out your working exactly as you have been shown Check your answers regularly and ask for help if you need it
11
P Example 2: Find the length of PR 82º x r q 43º 55º Q 15cm R p Draw arrows from the sides to the opposite angles to help decide which parts of the sine rule to use. p sinP q sinQ = 15 sin82º x sin43º sin43º × = × sin43º 15 sin82º sin43º × = x x = cm
12
Finding an Angle The Sine Rule can also be used to find an angle, but it is easier to use if the rule is written upside-down! Alternative form of the Sine Rule: sinA a sinB b sinC c = =
13
C Example 1: Find the size of angle ABC 6cm a 4cm b 72º x º A Draw arrows from the sides to the opposite angles to help decide which parts of the sine rule to use. B c sinA a sinB b = sin72º 6 sin xº 4 4 × = × 4 sin72º 6 4 × = sin xº sin xº = x = sin = º
14
P Example 2: Find the size of angle PRQ 85º q 7cm r x º R p 8.2cm Q sinP p sinR r = sin85º 8.2 sin xº 7 7 × = × 7 sin85º 8.2 7 × = sin xº sin xº = x = sin = º
15
1. 7.6 cm 2. 3. 47º 82º 105º 6.5cm 5 cm 8.2 cm xº xº xº 8.8 cm 6 cm 5.
66.6° xº 37.6° xº 45.5° xº 8.8 cm 6 cm 5. 6 km 4. 5.5 cm 31.0° xº 27º 3.5 km 51.1° xº 5.2 cm 33º Slide 10 is incomplete. Try to add slides on applications of Sine Rule 7. 6. 8 m 74º 57.7° xº 70º 9 mm 9.5 m 92.1° xº 52.3º (←Be careful!→) 22.9º 7 mm
16
Remember: Draw a diagram Label the sides Set out your working exactly as you have been shown Check your answers regularly and ask for help if you need it
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.