Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Nature of the Doppler Lines in the Ultra-compact Binary

Similar presentations


Presentation on theme: "The Nature of the Doppler Lines in the Ultra-compact Binary"— Presentation transcript:

1 The Nature of the Doppler Lines in the Ultra-compact Binary

2 Doppler Lines and Fe Fluorescence in the Ultra-compact Binary
Previous HETG GTO observations: - Schulz et al. 2001: Double Peaked X-ray Lines from the O/Ne-rich Accretion Disk in 4U : OBSIDs 104, 39 ksec - Krauss et al. 2007: High Resolution X-ray Spectroscopy of the Ultra-compact LMXB Pulsar 4U : OBSIDs 104, 39 ksec 3504, 97 ksec

3 Doppler Lines and Fe Fluorescence in the Ultra-compact Binary
New HETG GTO observations: Chakrabarty & Schulz 2009 Cycle 11 GO time: OBSIDs 11058, 80 ksec, Jan

4 Doppler Lines and Fe Fluorescence in the Ultra-compact Binary
Tbnew (Powerlaw + Bbodyrad): NH = 1.2x1021 cm-1 AG = ph cm-2 s-1 = 0.80 Abb = 593 (R2km / D2kpc) kTbb = 0.20 keV Tbnew (Powerlaw + Bbodyrad): NH = 1.2x1021 cm-1 AG = ph cm-2 s-1 = 1.19 Abb = 83 (R2km / D2kpc) kTbb = 0.48 keV

5 Flares and Dips in the New Light Curve of 4U1626-67
Obsid 11058: Obsid 3504:

6 Doppler Lines in the Ultra-compact Binary 4U1626-67

7 Doppler Lines in the Ultra-compact Binary 4U1626-67

8 Ionization Model Fits to the X-ray Spectrum of 4U1626-67
Photo-ionized modeling: Collisional-ionized modeling:

9 Collisional Ionization Model Fits to the X-ray Spectrum of 4U1626-67
Aped_density = 13:

10 Doppler Lines and Fe Fluorescence in the Ultra-compact Binary
Pure C/O/Ne disk?: Cannot maintain C I/Ne I/O I : log x > r~109 cm Pure C/O disk model predicts T = km (Werner et al. 2006)

11 Magnetospheric Accretion Shocks in the Ultra-compact Binary
Emission Volumes:

12 Doppler Lines in the Ultra-compact Binary 4U1626-67
In conclusion we propose the following: Rco = 8.5x108 cm Rco = Rmag Vshift ~ 2000 km/s ~ Vco Vco ~ Vshock Tjump < 60 MK CO plasma < 20 deg impact Vshift = Vion Tshock < 10 K Magnetospheric Accretion Shocks

13 Doppler Lines in the Ultra-compact Binary 4U1626-67
In conclusion we propose the following: • The light curve before torque reversal is featureless. The light curve after torque reversal shows enhance variability which includes type II flaring, intensity dips, and periods of quiescence. • The X-ray flux at the time of the observation in 2009 is at about the same level as it was in 1994. • The X-ray continuum after torque reversal is fit by the same spectrum as before, however with a higher blackbody temperature and a smaller emission radius . • The spectrum shows a narrow Fe K fluorescence line, which was not observed before torque reversal. • A photo-ionized plasma cannot fit the Ne and O Doppler line emissions. • The large ratio between the Ne X Lα line and the upper limit to the Ne X Lβ line rules out significant contributions due to resonance scattering • A collisions ionized plasma fits both Ne and O line ratios very well with enhanced plasma densities and plasma temperature between 1 MK and 10 MK. Magnetospheric Accretion Shocks


Download ppt "The Nature of the Doppler Lines in the Ultra-compact Binary"

Similar presentations


Ads by Google