Presentation is loading. Please wait.

Presentation is loading. Please wait.

Section 4.3 – Area and Definite Integrals

Similar presentations


Presentation on theme: "Section 4.3 – Area and Definite Integrals"β€” Presentation transcript:

1 Section 4.3 – Area and Definite Integrals
As the number of rectangles increased, the approximation of the area under the curve approaches a value. Copyright  2010 Pearson Education, Inc.

2 Section 4.3 – Area and Definite Integrals
Definition If a continuous function, f(x), has an antiderivative, F(x), on the interval [a, b], then lim π‘›β†’βˆž 𝑖=1 ∞ 𝑓 π‘₯ 𝑖 βˆ†π‘₯= π‘Ž 𝑏 𝑓 π‘₯ 𝑑π‘₯=𝐹(𝑏)βˆ’πΉ(𝑏) Parts of the Definite Integral

3 Section 4.3 – Area and Definite Integrals
Total Area The total area under the curve will be positive. The total area under the curve will be negative. The total area under the curve will be zero.

4 Section 4.3 – Area and Definite Integrals
The Fundamental Theorem of Calculus 𝐼𝑓 𝑓 𝑖𝑠 π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘  π‘Žπ‘‘ π‘’π‘£π‘’π‘Ÿπ‘¦ π‘π‘œπ‘–π‘›π‘‘ 𝑖𝑛 π‘Ž, 𝑏 π‘Žπ‘›π‘‘ 𝐹 𝑖𝑠 π‘Žπ‘›π‘¦ π‘Žπ‘›π‘‘π‘–π‘‘π‘’π‘Ÿπ‘–π‘£π‘Žπ‘‘π‘–π‘£π‘’ π‘œπ‘“ 𝑓 π‘œπ‘› π‘Ž, 𝑏 , π‘‘β„Žπ‘’π‘› π‘Ž 𝑏 𝑓 π‘₯ 𝑑π‘₯=𝐹 𝑏 βˆ’πΉ(π‘Ž) . Examples 2 6 5π‘₯ 𝑑π‘₯ = 5 π‘₯ = 6 2 5(6) 2 2 βˆ’ = 90βˆ’10= 80 π‘₯ 𝑑π‘₯ = π‘₯ 𝑑π‘₯ = 5 1 2 ln π‘₯ =2 ln 5 βˆ’2 ln 1 = 3.2189

5 Section 4.3 – Area and Definite Integrals
The Fundamental Theorem of Calculus π‘Ž 𝑏 𝑓 π‘₯ 𝑑π‘₯=𝐹 𝑏 βˆ’πΉ(π‘Ž) . 3 4 π‘₯ 2 +3π‘₯βˆ’2 𝑑π‘₯ = 3 4 π‘₯ 2 𝑑π‘₯ π‘₯ 𝑑π‘₯ βˆ’ 𝑑π‘₯ = 4 3 1 3 π‘₯ 3 π‘₯ 2 βˆ’2π‘₯ 1 3 (4) βˆ’2(4) βˆ’ βˆ’2 3 = βˆ’16.5=

6 Section 4.3 – Area and Definite Integrals
The Fundamental Theorem of Calculus π‘Ž 𝑏 𝑓 π‘₯ 𝑑π‘₯=𝐹 𝑏 βˆ’πΉ(π‘Ž) . 32 π‘₯ 𝑑π‘₯ = π‘₯ βˆ’1 5 βˆ’ = 32 1 1 32 π‘₯ βˆ’6 5 𝑑π‘₯ = βˆ’5 π‘₯ 1 5 1 βˆ’5 (32) 1 5 βˆ’ βˆ’ = βˆ’ 5 2 βˆ’ βˆ’ 5 1 = 2.5

7 Section 4.3 – Area and Definite Integrals
The Fundamental Theorem of Calculus π‘Ž 𝑏 𝑓 π‘₯ 𝑑π‘₯=𝐹 𝑏 βˆ’πΉ(π‘Ž) . βˆ’ 𝑒 6π‘₯ 𝑑π‘₯ = 4 βˆ’ 𝑒 6π‘₯ 𝑑π‘₯ = 1 3 βˆ’ 1 2 1 3 βˆ’ 1 2 𝑒 6π‘₯ = 2 3 𝑒 6π‘₯ = 2 3 𝑒 βˆ’ 2 3 𝑒 6 βˆ’1 2 = 2 3 𝑒 2 βˆ’ 2 3 𝑒 βˆ’3 =4.8928

8 Section 4.3 – Area and Definite Integrals
The Fundamental Theorem of Calculus π‘Ž 𝑏 𝑓 π‘₯ 𝑑π‘₯=𝐹 𝑏 βˆ’πΉ(π‘Ž) . 1 2 π‘₯ 4 +6 π‘₯ 𝑑π‘₯ = 2 1 2 1 π‘₯ 𝑑π‘₯ = π‘₯ π‘₯ π‘₯ = π‘₯ π‘₯ 3 +9π‘₯ (2) (2) 3 +9(2) βˆ’ (1) (1) 3 +9(1) 40.4βˆ’11.2= 29.2

9 Section 4.3 – Area and Definite Integrals
The Fundamental Theorem of Calculus π‘Ž 𝑏 𝑓 π‘₯ 𝑑π‘₯=𝐹 𝑏 βˆ’πΉ(π‘Ž) . π‘₯ 2 βˆ’3π‘₯ π‘₯ 2 𝑑π‘₯ = 2 4 5βˆ’ 3 π‘₯ 𝑑π‘₯ = 4 5π‘₯βˆ’ 3ln x = 2 5(4)βˆ’ 3ln (4) βˆ’ 5 2 βˆ’ 3ln 2 = βˆ’7.9206= 7.9206

10 Section 4.3 – Area and Definite Integrals
The Fundamental Theorem of Calculus π‘Ž 𝑏 𝑓 π‘₯ 𝑑π‘₯=𝐹 𝑏 βˆ’πΉ(π‘Ž) . 1 2 𝑒 2π‘₯ 𝑒 4π‘₯ + 𝑒 βˆ’5π‘₯ 𝑑π‘₯ = 0 1 𝑒 6π‘₯ + 𝑒 βˆ’3π‘₯ 𝑑π‘₯ = 1 1 6 π‘₯ 6 βˆ’ 1 3 𝑒 βˆ’3π‘₯ 1 6 𝑒 6(1) βˆ’ 1 3 𝑒 βˆ’3(1) βˆ’ 𝑒 6(0) βˆ’ 1 3 𝑒 βˆ’3(0) βˆ’(βˆ’0.1667)=


Download ppt "Section 4.3 – Area and Definite Integrals"

Similar presentations


Ads by Google