Download presentation
Presentation is loading. Please wait.
Published bySonny Budiman Modified over 6 years ago
1
Nonparametrics.Zip (a compressed version of nonparamtrics) Tom Hettmansperger Department of Statistics, Penn State University References: Higgins (2004) Intro to Modern Nonpar Stat Hollander and Wolfe (1999) Nonpar Stat Methods Arnold Notes Johnson, Morrell, and Schick (1992) Two-Sample Nonparametric Estimation and Confidence Intervals Under Truncation, Biometrics, 48, Website:
2
Single Sample Methods
3
Inference: Confidence Intervals and Hypothesis Tests
Robust Data Summaries Graphical Displays Inference: Confidence Intervals and Hypothesis Tests Location, Spread, Shape CI-Boxplots (notched boxplots) Histograms, dotplots, kernel density estimates.
4
Absolute Magnitude Planetary Nebulae Milky Way
Abs Mag (n = 81) …
7
But don’t be too quick to “accept” normality:
10
Null Hyp: Pop distribution, F(x) is normal
The Kolmogorov-Smirnov Statistic The Anderson-Darling Statistic
12
Anatomy of a 95% CI-Boxplot
Box formed by quartiles and median IQR (interquartile range) Q3 – Q1 Whiskers extend from the end of the box to the farthest point within 1.5xIQR. For a normal benchmark distribution, IQR=1.348Stdev and 1.5xIQR=2Stdev. Outliers beyond the whiskers are more than 2.7 stdevs from the median. For a normal distribution this should happen about .7% of the time. Pseudo Stdev = .75xIQR
13
The confidence interval and hypothesis test
19
Additional Remarks: The median is a robust measure of location. It is not affected by outliers. It is efficient when the population has heavier tails than a normal population. The sign test is also robust and insensitive to outliers. It is efficient when the tails are heavier than those of a normal population. Similarly for the confidence interval. In addition, the test and the confidence interval are distribution free and do not depend on the shape of the underlying population to determine critical values or confidence coefficients. They are only 64% efficient relative to the mean and t-test when the population is normal. If the population is symmetric then the Wilcoxon Signed Rank statistic can be used, and it is robust against outliers and 95% efficient relative to the t-test.
20
Two-Sample Methods
21
Two-Sample Comparisons
85% CI-Boxplots Mann-Whitney-Wilcoxon Rank Sum Statistic Estimate of difference in locations Test of difference in locations Confidence Interval for difference in locations Levene’s Rank Statistic for differences in scale or variance.
28
Why 85% Confidence Intervals?
We have the following test of Rule: reject the null hyp if the 85% confidence intervals do not overlap. The significance level is close to 5% provided the ratio of sample sizes is less than 3.
29
Mann-Whitney-Wilcoxon Statistic: The sign statistic on the pairwise differences.
Unlike the sign test (64% efficiency for normal population, the MWW test has 95.5% efficiency for a normal population. And it is robust against outliers in either sample.
31
Mann-Whitney Test and CI: App Mag, Abs Mag
N Median App Mag (M-31) Abs Mag (MW) Point estimate for d is 95.0 Percent CI for d is (24.530,25.256) W = Test of d=0 vs d not equal 0 is significant at What is W?
33
What about spread or scale differences between the two populations?
Below we shift the MW observations to the right by 24.9 to line up with M-31. Variable StDev IQR PseudoStdev MW M
34
Levene’s Rank Test Compute |Y – Med(Y)| and |X – Med(X)|, called absolute deviations. Apply MWW to the absolute deviations. (Rank the absolute deviations) The test rejects equal spreads in the two populations when difference in average ranks of the absolute deviations is too large. Idea: After we have centered the data, then if the null hypothesis of no difference in spreads is true, all permutations of the combined data are roughly equally likely. (Permutation Principle) So randomly select a large set of the permutations say B permutations. Assign the first n to the Y sample and the remaining m to the X sample and compute MMW on the absolute deviations. The approximate p-value is #MMW > original MMW divided by B.
35
Difference of rank mean abso devs 51.9793
So we easily reject the null hypothesis of no difference in spreads and conclude that the two populations have significantly different spreads.
36
One Sample Methods k-Sample Methods Two Sample Methods
37
All one-sample and two-sample methods can be applied one at a time
Variable Mean StDev Median .75IQR Skew Kurtosis Messier Messier NGC NGC NGC All one-sample and two-sample methods can be applied one at a time or two at a time. Plots, summaries, inferences. We begin k-sample methods by asking if the location differences between the NGC nebulae are statistically significant. We will briefly discuss issues of truncation.
40
Kruskal-Wallis Test on NGC
sub N Median Ave Rank Z Overall KW = DF = 2 P = 0.000 This test can be followed by multiple comparisons. For example, if we assign a family error rate of .09, then we would conduct 3 MWW tests, each at a level of .03. (Bonferroni)
42
What to do about truncation.
See a statistician Read the Johnson, Morrell, and Schick reference. and then see a statistician. Here is the problem: Suppose we want to estimate the difference in locations between two populations: F(x) and G(y) = F(y – d). But (with right truncation at a) the observations come from Suppose d > 0 and so we want to shift the X-sample to the right toward the truncation point. As we shift the Xs, some will pass the truncation point and will be eliminated from the data set. This changes the sample sizes and requires adjustment when computing the corresponding MWW to see if it is equal to its expectation. See the reference for details.
43
Comparison of NGC4382 and NGC 4494
Data multiplied by 100 and 2600 subtracted. Truncation point taken as 120. Point estimate for d is W = m = 101 and n = 59 Computation of shift estimate with truncation d m n W E(W) 25.3 88 59 5.10 4750.5 4366.0 28.3 84 3.60 4533.5 4248.0 30.3 83 2.10 4372.0 4218.5 32.3 81 0.80 4224.5 4159.5 33.3 -0.20 4144.5 33.1 -0.00 4161.5
44
What more can we do? Multiple regression
Analysis of designed experiments (AOV) Analysis of covariance Multivariate analysis These analyses can be carried out using the website:
45
Professor Lundquist, in a seminar on compulsive thinkers, illustrates his brain
stapling technique.
46
The End
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.