Presentation is loading. Please wait.

Presentation is loading. Please wait.

Acceptance Corrections: Bin-by-Bin Method vs. Matrix Conversion Method

Similar presentations


Presentation on theme: "Acceptance Corrections: Bin-by-Bin Method vs. Matrix Conversion Method"โ€” Presentation transcript:

1 Acceptance Corrections: Bin-by-Bin Method vs. Matrix Conversion Method
Nikolay Markov, Brandon Clary and Kyungseon Joo University of Connecticut CLAS Collaboration Meeting March 8, 2018

2 Acceptance Corrections
Unfold true distributions from measured distributions

3

4

5 Acceptance Corrections
Bin-by-bin method Di = Ai Ti Di is # of measured events in i-th bin Ti is # of true events in i-th bin Ai is the acceptance of i-th bin where Ai = NREC / NGEN for i-th bin 2. Matrix Method Di = โˆ‘Mij Tj Mij is the acceptance matrix where ๐‘ด ๐’Š๐’‹ = ๐‘ต ๐‘น๐‘ฌ๐‘ช ๐’Š / ๐‘ต ๐‘ฎ๐‘ฌ๐‘ต ๐’‹

6 Bin-by-Bin Method Di = Ai Ti Di is # of measured events in i-th bin
Ti is # of true events in i-th bin Ai is the acceptance of i-th bin where 1. ๐‘จ ๐’Š = ๐‘ต ๐‘น๐‘ฌ๐‘ช / ๐‘ต ๐‘ฎ๐‘ฌ๐‘ต for i-th bin 2. ๐‘จ ๐’Š = ๐‘ด ๐’Š๐’Š from ๐‘ด ๐’Š๐’‹ = ๐‘ต ๐‘น๐‘ฌ๐‘ช ๐’Š / ๐‘ต ๐‘ฎ๐‘ฌ๐‘ต ๐’‹

7 3 Simple Event Generators (Inclusive scattering)
Beam energy: 10.6 GeV W flat, [1.0: 5.0] GeV Electron lab f angle flat, [0: 360] degrees Q2 [1.0: 10.0] GeV2 Flat 1/ Q4 sin(2*Q2) + 1.5

8 Generated Events

9 Simulation and reconstruction
GEMC 4a.2.1 Coatjava 4a.8.3 Torus - 100% Solenoid - 100% MICROMEGAS in Electron PID: EB electron id Fiducial cut

10 Fiducial Cut

11 Resolutions W Q2 sQ2 = 0.02 GeV2 sW = 10 MeV

12 Acceptances and Purity
๐ด๐ถ๐ถ ๐‘‡ = ๐‘ ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘”๐‘’๐‘› = ๐‘ ๐‘Ÿ๐‘’๐‘ ๐‘”๐‘’๐‘› + ๐‘ ๐‘Ÿ๐‘’๐‘ ๐‘š๐‘–๐‘”๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘ ๐‘”๐‘’๐‘› : Total acceptance ๐ด๐ถ๐ถ ๐‘ƒ = ๐‘ ๐‘Ÿ๐‘’๐‘ ๐‘”๐‘’๐‘› ๐‘ ๐‘”๐‘’๐‘› : Pure acceptance ๐ด๐ถ๐ถ ๐‘€ = ๐‘ ๐‘Ÿ๐‘’๐‘ ๐‘š๐‘–๐‘”๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘ ๐‘”๐‘’๐‘› : Migrated acceptance ๐ด๐ถ๐ถ ๐‘‡ = ๐ด๐ถ๐ถ ๐บ + ๐ด๐ถ๐ถ ๐‘€ ๐‘ƒ๐‘ข๐‘Ÿ๐‘–๐‘ก๐‘ฆ = ๐‘ ๐‘Ÿ๐‘’๐‘ ๐‘”๐‘’๐‘› ๐‘ ๐‘Ÿ๐‘’๐‘ = ๐‘ ๐‘Ÿ๐‘’๐‘ ๐‘”๐‘’๐‘› ๐‘ ๐‘Ÿ๐‘’๐‘ ๐‘”๐‘’๐‘› + ๐‘ ๐‘Ÿ๐‘’๐‘ ๐‘š๐‘–๐‘”๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘

13 Acceptances vs. Models sQ2 = 0.02 GeV2 ๐ด๐ถ๐ถ ๐‘‡ = ๐‘ ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘”๐‘’๐‘›
๐ด๐ถ๐ถ ๐‘‡ = ๐‘ ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘”๐‘’๐‘› 10.0 ๐ด๐ถ๐ถ ๐‘ƒ = ๐‘ ๐‘Ÿ๐‘’๐‘ ๐‘”๐‘’๐‘› ๐‘ ๐‘”๐‘’๐‘› ๐ด๐ถ๐ถ ๐‘€ = ๐‘ ๐‘Ÿ๐‘’๐‘ ๐‘š๐‘–๐‘”๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘ ๐‘”๐‘’๐‘›

14 Purity vs. Models sQ2 = 0.02 GeV2 10.0 ๐‘ƒ๐‘ข๐‘Ÿ๐‘–๐‘ก๐‘ฆ = ๐‘ ๐‘Ÿ๐‘’๐‘ ๐‘”๐‘’๐‘› ๐‘ ๐‘Ÿ๐‘’๐‘

15 Purity vs. Acceptances sQ2 = 0.02 GeV2 10.0

16 Iterative Unfolding using Bin-by-Bin Method N
Iterative Unfolding using Bin-by-Bin Method N. Harrison PhD Thesis for pion SIDIS

17 Bin Size Matters Large bin size may result in a loss of sensivity to high frequency components or acute changes. Small bin size may create high sensitive to bin migrations and event generator dependence.

18 where ๐‘€ ๐‘–๐‘— = ๐‘ ๐‘…๐ธ๐ถ ๐‘– / ๐‘ ๐บ๐ธ๐‘ ๐‘—
Matrix Method Di = โˆ‘Mij Tj where ๐‘€ ๐‘–๐‘— = ๐‘ ๐‘…๐ธ๐ถ ๐‘– / ๐‘ ๐บ๐ธ๐‘ ๐‘—

19 Metrix Method 10 Bins

20 Metrix Method 50 Bins

21 Summary We showed that acceptance is sensitive to event generator models due to bin-migrations even for binnings with much larger than tracking resolution bin sizes. We need to avoid bins with very low purity values to minimize systematic errors. We showed that matrix conversion method is less sensitive to event generator models due to bin-migrations, but it is difficult to implement it for multi-dimensional analysis.

22 Generated Events vs. Reconstructed Events


Download ppt "Acceptance Corrections: Bin-by-Bin Method vs. Matrix Conversion Method"

Similar presentations


Ads by Google