Download presentation
Presentation is loading. Please wait.
Published bySolomon Cox Modified over 6 years ago
1
Chapter 6 Section 1 What Does DNA Look Like? Bellwork Can you explain the difference between traits and characteristics? Which is more closely associated with DNA and genes? Do you know where DNA and genes are found in the body? In specific cells?
2
The Pieces of the Puzzle
Chapter 6 Section 1 What Does DNA Look Like? The Pieces of the Puzzle DNA stands for deoxyribonucleic acid. DNA is the genetic material that determines inherited characteristics. Nucleotides: The Subunits of DNA DNA is made of subunits called nucleotides. A nucleotide consists of a sugar, a phosphate, and a base.
3
Chapter 6 Section 1 What Does DNA Look Like? Chargaff’s Rule Erwin Chargaff found that the amount of adenine in DNA always equals the amount of thymine, and the amount of guanine always equals the amount of cytosine. Franklin’s Discovery Chemist Rosalind Franklin was able to make images of DNA molecules by using X-ray diffraction.
4
Chapter 6 Section 1 What Does DNA Look Like? Watson and Crick’s Model James Watson and Francis Crick used Chargaff’s and Franklin’s research to build a model of DNA. The model, which looked like a long, twisted ladder, eventually helped explain how DNA is copied and how it functions in the cell.
5
DNA’s Double Structure
Chapter 6 Section 1 What Does DNA Look Like? DNA’s Double Structure The Double Helix The shape of DNA is known as a double helix. The two sides of the ladder are made of alternating sugar parts and phosphate parts. The rungs of the ladder are made of a pair of bases. A = T G= C
6
Chapter 6 Section 1 What Does DNA Look Like?
7
Chapter 6 Making Copies of DNA
Section 1 What Does DNA Look Like? Making Copies of DNA How Copies Are Made During replication, a DNA molecule is split down the middle, where the bases meet. The bases on each side of the molecule are used as a pattern for a new strand. When Copies Are Made DNA is copied every time a cell divides. Each new cell gets a complete copy of all the DNA.
8
Chapter 6 Section 1 What Does DNA Look Like?
9
Chapter 6 Bellwork Unscramble the following words: tpsoneir neesg
Section 2 How DNA Works Bellwork Unscramble the following words: tpsoneir neesg Now think of three words you associate with each of the above words and use them all in a paragraph that highlights what you know about DNA.
10
Chapter 6 Unraveling DNA
Section 2 How DNA Works Unraveling DNA DNA is often wound around proteins, coiled into strands, and then bundled up even more. In a cell that has a nucleus, the strands of DNA and proteins are bundled into chromosomes. A gene consists of a string of nucleotides that give the cell information about how to make a specific trait.
11
Chapter 6 Section 2 How DNA Works
12
Chapter 6 Genes and Proteins
Section 2 How DNA Works Genes and Proteins Proteins and Traits Proteins act as chemical triggers for many of the processes within cells. Proteins help determine traits. Help from RNA Another type of molecule that helps make proteins is called RNA, or ribonucleic acid. RNA is so similar to DNA that RNA can serve as a temporary copy of a DNA sequence.
13
Chapter 6 Section 2 How DNA Works The Making of a Protein The first step in making a protein is to copy one side of the segment of DNA containing a gene. This copy is called messenger RNA (mRNA). A ribosome is a cell organelle composed of RNA and protein. A ribosome uses mRNA, transfer RNA (tRNA), and amino acids to make proteins. You can see the steps of protein production on the following two slides.
14
Chapter 6 Section 2 How DNA Works
15
Chapter 6 Section 2 How DNA Works
16
Chapter 6 Changes in Genes
Section 2 How DNA Works Changes in Genes Mutations Changes in the number, type, or order of bases on a piece of DNA are known as mutations.
17
Chapter 6 Section 2 How DNA Works Do Mutations Matter? There are three possible consequences to changes in DNA: an improved trait, no change, or a harmful trait. How Do Mutations Happen? Mutations happen regularly because of random errors when DNA is copied. Any physical or chemical agent that can cause a mutation in DNA is called a mutagen.
18
An Example of Substitution
Chapter 6 Section 2 How DNA Works An Example of Substitution A mutation, such as a substitution, can be harmful because it may cause a gene to produce the wrong protein. A simple change in an amino acid can cause a disease such as sickle cell anemia, as shown on the next slide.
19
Chapter 6 Section 2 How DNA Works
20
Uses of Genetic Knowledge
Chapter 6 Section 2 How DNA Works Uses of Genetic Knowledge Genetic Engineering Scientists can manipulate individual genes within organisms. This kind of manipulation is called genetic engineering. Genetic Identification Your DNA is unique, so it can be used like a fingerprint to identify you. DNA fingerprinting identifies the unique patterns in an individual’s DNA.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.