Download presentation
Presentation is loading. Please wait.
Published byDarcy Nichols Modified over 6 years ago
1
Day 17: October 15, 2012 Energy and Power Basics
ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 17: October 15, 2012 Energy and Power Basics Penn ESE370 Fall DeHon
2
Previously Where capacitance arises What drives delay
How to optimize Power as a limiting constraint Energy, Power Density Penn ESE370 Fall DeHon
3
Today Power Sources Static Capacitive Switching Short Circuit (Day 18)
Penn ESE370 Fall DeHon
4
Power P=I×V Where should we look at I? Penn ESE370 Fall DeHon
5
Power P=IV What’s V? What is I? Steady-State (input fixed)?
When input switches 01 10 Penn ESE370 Fall DeHon
6
Observe I changes over time Data dependent At least two components
Istatic – no switch Iswitch – when switch Penn ESE370 Fall DeHon
7
Static Power Where does Istatic come from? Subthreshold leakage
Gate-Drain leakage Penn ESE370 Fall DeHon
8
Data Dependent? How does value of input impact Istatic?
Penn ESE370 Fall DeHon
9
Data Dependent? How does value of input impact Istatic?
Penn ESE370 Fall DeHon
10
Billion Transistor Leakage
4 Billion transistors Say 1 Billion gates Each with one W=2 transistor leaking How much leakage current? Penn ESE370 Fall DeHon
11
ITRS 2009 45nm Ileak0 = 0.045mm × Isd,leak High Performance Isd,leak
100nA/mm Isd,sat 1200 mA/mm Cg,total 1fF/mm Vth 285mV Ileak0 = 0.045mm × Isd,leak Penn ESE370 Fall DeHon
12
Leakage Power 4 Billion Transistor chip doing nothing Total Leakage?
Penn ESE370 Fall DeHon
13
Reduce Leakage? P=VI How do we reduce leakage?
Penn ESE370 Fall DeHon
14
ITRS 2009 45nm Ileak0 = 0.045mm × Isd,leak High Performance Low Power
100nA/mm 50pA/mm Isd,sat 1200 mA/mm 560mA/mm Cg,total 1fF/mm 0.91fF/mm Vth 285mV 585mV Ileak0 = 0.045mm × Isd,leak Penn ESE370 Fall DeHon
15
Low Power Process 4 Billion Transistor chip doing nothing
Total Leakage? Leakage Power? Penn ESE370 Fall DeHon
16
Switching Penn ESE370 Fall DeHon
17
Switching Where does current go during switching?
Penn ESE370 Fall DeHon
18
Switching Currents Charge (discharge) output If both transistor on:
Current path from Vdd to Gnd Penn ESE370 Fall DeHon
19
Switching Currents Iswitch(t) = Isc(t) + Idyn(t)
I(t) = Istatic(t)+Iswitch(t) Penn ESE370 Fall DeHon
20
Charging Idyn(t) – why changing? Ids = f(Vds,Vgs)
and Vgs, Vds changing Penn ESE370 Fall DeHon
21
Look at Energy Penn ESE370 Fall DeHon
22
Energy to Switch Penn ESE370 Fall DeHon
23
Integrating Do we know what this is? Penn ESE370 Fall DeHon
24
Capacitor Charge Do we know what this is? What is Q?
Penn ESE370 Fall DeHon
25
Capacitor Charge Penn ESE370 Fall DeHon
26
Capacitor Charging Energy
Penn ESE370 Fall DeHon
27
Switching Power Every time switch 01 pay:
E = CV2 Pdyn = (# 01 trans) × CV2 / time # 01 trans = ½ # of transitions Pdyn = (# trans) × ½CV2 / time Penn ESE370 Fall DeHon
28
Charging Power Pdyn = (# trans) × ½CV2 / time
Often like to think about switching frequency Useful to consider per clock cycle Frequency f = 1/clock-period Pdyn = (#trans/clock) ½CV2 f Penn ESE370 Fall DeHon
29
Charging Power Pdyn = (#trans/clock) ½CV2 f Let a = activity factor
a = average #tran/clock Pdyn = a½CV2 f Penn ESE370 Fall DeHon
30
ITRS 2009 45nm C0 = 0.045mm × Cg,total C0 = 0.045 × 10-15 F
High Performance Low Power Isd,leak 100nA/mm 50pA/mm Isd,sat 1200 mA/mm 560mA/mm Cg,total 1fF/mm 0.91fF/mm Vth 285mV 585mV C0 = 0.045mm × Cg,total C0 = × F Penn ESE370 Fall DeHon
31
Switching Power 4 Billion Transistors Cload = 22C0 a=0.2 f=1GHz Power?
Organized into 1 billion gates (e.g. nand2) Cload = 22C0 a=0.2 f=1GHz Power? Penn ESE370 Fall DeHon
32
Switching Power V=1V Cload=22C0 ≈ 1 fF = 10-15F P=a(0.5×10-15)(Ngate)f
P=10-16(Ngate)f Penn ESE370 Fall DeHon
33
Dynamic vs. Static Power
At what speed (f) does leakage power dominate switching power? Penn ESE370 Fall DeHon
34
Compare WN = 2 Ileak = 9×10-9 A P=a(0.5×10-15) f + 9×10-9 W a=0.2
P=10-16×f + 9×10-9 W For what freqs does leakage power dominate switching power? Penn ESE370 Fall DeHon
35
Charging Power Pswitch = a(½C)V2f What values can a take on? a>1?
Penn ESE370 Fall DeHon
36
Data Dependent Activity
Consider an 8b counter What is activity, a, for: Low bit? High bit? Average across all 8 output bits? Assuming random inputs (no glitching) Activity at output of nand4? Activity at output of xor4? Penn ESE370 Fall DeHon
37
Glitches Inputs Transition from 0 1 0 1 1 1
What does output look like? Penn ESE370 Fall DeHon
38
Admin Andre out on Tuesday Back on Wednesday HW5 due Thursday
No office hours Back on Wednesday HW5 due Thursday Penn ESE370 Fall DeHon
39
Ideas Three components of power Ptot = Pstatic + Psc + Pdyn Static
Short-circuit Charging Ptot = Pstatic + Psc + Pdyn Penn ESE370 Fall DeHon
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.