Presentation is loading. Please wait.

Presentation is loading. Please wait.

CSE 140 Lecture 10 Sequential Networks: Implementation

Similar presentations


Presentation on theme: "CSE 140 Lecture 10 Sequential Networks: Implementation"— Presentation transcript:

1 CSE 140 Lecture 10 Sequential Networks: Implementation
Professor CK Cheng CSE Dept. UC San Diego

2 Implementation Format and Tool Procedure Excitation Tables Example

3 Canonical Form: Mealy and Moore Machines
x(t) Combinational Logic y(t) CLK x(t) C2 y(t) x(t) C1 C2 y(t) C1 CLK CLK

4 Canonical Form: Mealy and Moore Machines
Mealy Machine: yi(t) = fi(X(t), S(t)) Moore Machine: yi(t) = fi(S(t)) si(t+1) = gi(X(t), S(t)) x(t) x(t) C1 C2 y(t) C1 C2 y(t) CLK CLK s(t) s(t) Mealy Machine Moore Machine

5 iClicker The advantage of Moore machine over Mealy machine is that for Moore machine, the circuit is smaller the circuit is faster the input is synchronized with clock the output is synchronized with clock None of the above

6 Sequential Network Implementation: Format and Tool
Canonical Form: Mealy & Moore machines State Table  Netlist Tool: Excitation Table x(t) C1 C2 y(t) CLK s(t) Q(t+1) = h(x(t), Q(t)) y(t) = f(x(t), Q(t))

7 Implementation: Procedure
State Table => Excitation Table Given a state table, we have NS: Q(t+1) = h(X(t),Q(t)) We want to derive D(t), T(t), (S(t) R(t)), (J(t) K(t)) as functions of (X,Q(t)). We implement D, T, (S R), (J K) as combinational logic.

8 Implementation: Procedure
F-F State Table <=> F-F Excitation Table W PS NS NS PS W W: D F-F D(t)= eD(Q(t+1), Q(t)) T F-F T(t)= eT(Q(t+1), Q(t)) SR F-F S(t)= eS(Q(t+1), Q(t)) R(t)= eR(Q(t+1), Q(t)) JK F-F J(t)= eJ(Q(t+1), Q(t)) K(t)= eK(Q(t+1), Q(t))

9 Implementation: Procedure
State table: y(t)= f(Q(t), x(t)), Q(t+1)= h(x(t),Q(t)) Excitation table of F-Fs: D(t)= eD(Q(t+1), Q(t)); T(t)= eT(Q(t+1), Q(t)); (S, R), or (J, K) From 1 & 2, we derive excitation table of the system D(t)= gD(Q(t), x(t))= eD(h(x(t),Q(t)),Q(t)); T(t)= gT(Q(t), x(t))= eT(h(x(t),Q(t)),Q(t)); (S, R) or (J, K). Use K-map to derive optional combinational logic implementation. T(t)= gT(Q(t), x(t)) y(t)= f(Q(t), x(t))

10 Excitation Table State table of JK F-F: Excitation table of JK F-F:
00 1 01 10 11 Q(t) Q(t+1) JK Excitation table of JK F-F: 0- -1 1 1- -0 PS NS Q(t) Q(t+1) JK If Q(t) is 1, and Q(t+1) is 0, then JK needs to be 0-.

11 Excitation Tables and State Tables
SR SR Q(t+1) NS SR PS 0- 01 1 10 -0 PS 00 1 01 10 1 11 - 1 1 Q(t) Q(t) Q(t+1) T T Q(t+1) NS T PS 1 1 PS 1 1 1 1 Q(t) Q(t) Q(t+1)

12 Excitation Tables and State Tables
JK JK Q(t+1) NS JK PS 0- -1 1 1- -0 PS 00 1 01 10 1 11 1 1 1 Q(t) Q(t) Q(t+1) D D Q(t+1) NS D PS 1 PS 1 1 1 Q(t) Q(t) Q(t+1)

13 iClicker Given a flip-flop, the relation of its state table and excitation table is One to one One to many Many to one Many to many None of the above

14 Implementation: Example Implement a JK F-F with a T F-F
Q Q’ C1 J K T State Table Q(t+1) = h(J(t),K(t),Q(t)) = J(t)Q’(t)+K’(t)Q(t) JK JK PS 00 1 01 10 1 11 1 1 Q(t)

15 Example: Implement a JK flip-flop using a T flip-flop
Excitation Table of T Flip-Flop T(t) = Q(t) XOR Q(t+1) Q(t+1) NS PS 1 1 1 Q(t) T Excitation Table of the Design id 1 2 3 4 5 6 7 J(t) 1 K(t) 1 Q(t) 1 Q(t+1) 1 T(t) 1 T(t) = Q(t) XOR ( J(t)Q’(t) + K’(t)Q(t))

16 Example: Implement a JK flip-flop using a T flip-flop
T(J,K,Q): K T = K(t)Q(t) + J(t)Q’(t) Q(t) J J Q Q’ T K


Download ppt "CSE 140 Lecture 10 Sequential Networks: Implementation"

Similar presentations


Ads by Google