Download presentation
Presentation is loading. Please wait.
Published byFlora Lee Modified over 6 years ago
1
New clues on the evolution of clustering from the K20 and FIRES surveys
Emanuele Daddi ESO K20 survey PI: A Cimatti (Arcetri) Collaborators: T. Broadhurst (HUJ) S. Cristiani (ESO) S. D’Odorico (ESO) E. Daddi (ESO) Fontana (Roma) E. Giallongo (Roma) R. Gilmozzi (ESO) N. Menci (Roma) M. Mignoli (Bologna) F. Poli (Roma) L. Pozzetti (Bologna) P. Saracco (Milano) J. Vernet (Arcetri) G. Zamorani (Bologna) FIRES survey PI: M. Franx (Leiden) Collaborators: I. Labbe (Leiden) A. Moorwood (ESO) H.W. Rix (MPIA) H. Rottgering (Leiden) G. Rudnick (MPA) P. van Dokkum(Yale) N. Forster-Schreiber (Leiden) P. van der Werf (Leiden)
2
Spectroscopic study of a large sample of
The K20 survey Spectroscopic study of a large sample of K-selected galaxies ESO “large program” 17 VLT nights 546 objects with Ks<20 from two fields (CDFS and ) (unique selection criterium) Total surveyed area: 52 arcmin Optical & NIR spectroscopy (FORS1, FORS2,ISAAC) 474 objects with spectroscopic redshift 1/3 galaxies at z>1 2
3
K20 redshift distribution
Cimatti et al 2002c 147 galaxies 0.75<z<1.3
4
A mass-limited sample M/L ratios from R-K colors model tracks
(resembling Cole et al 2001)
5
Projected correlations
(Davis & Peebles 1981) 10 Mpc cutting scale gamma=1.8 MonteCarlo simulations to determine errors and assess reliability
6
Clustering evolution to z~1
Agrees with some estimate Based on photometric Redshifts for K-selected Samples of comparable depths (e.g. Firth et al. 2002)
7
Unveiling the nature of EROs
Cimatti et al 2002a 45 EROs to K<19.2 1/3 dusty-SF galaxies 1/3 old stellar populations 1/3 unidentified/unclassified
8
EROs clustering with two flavours
Old EROs are strongly clustered Dusty-SF EROs are poorly clustered Daddi et al 2002
9
Early- and Late-type Galaxies
10
Clustering evolution for early-type galaxies
Daddi et al 2001 New measurements: Firth et al 2002 Roche et al 2002 Miyazaki et al 2002 EROs
11
Some models predictions
Moustakas & Somerville 2002
12
Faint Infra Red Extragalactic Survey
About 200 ISAAC hours Service Mode (excellent seeing) Js-H-Ks bands 2 fields Hubble Deep Field South (clustering discussed here) MS1054 Field (see Poster by Forster-Schreiber et al.) Franx et al 2000, the Messenger Rudnick et al 2001 Labbe et al 2002, submitted
13
Hubble Deep Field South IJK mosaic
For each Js,H,Ks: About 35 hours Integration time Seeing 0.45” on final Coadded images 5sigma limits (Vega): Ks=24.0 H=24.8 Js=25.9 Labbe et al 2002
14
Photometric redshifts
Rudnick et al 2001, 2002 (in preparation) WFPC2 images F300, F450, F606, F814 + FIRES JHK images Δz = 0.08
15
Sky and redshift distributions
Broadly agree with Kashikawa et al 2003 Subaru Deep Field 435 galaxies at K<24 40% at z>2
16
The clustering of K<24 galaxies
17
Clustering of K-selected galaxies at 2<z<4
J-K color segregation
18
Comparing to LBGs and SCUBA galaxies
Existence of a population with r >8 at 2<z<4 Larger clustering with respect to optically selected Galaxies Color segregation of clustering o
19
SEDs of J-K>1.7 galaxies at 2<z<4
Evidence for breaks, old populations Consistent with Shapley et al 2001
20
Redshift confirmations
There are so far 6 confirmed z>2 galaxies selected with the reddest J-K>2.3 colors in FIRES (van Dokkum et al, in preparation) Photometric redshifts generally work fine SED modeling suggest old stellar pops
21
Fitting in a CDM scenario
Mo & White 2002 Large occupation numbers required a population with Large number density And large clustering At z=3 is not predicted In models (e.g. GIF)
22
Formation of ellipticals ? Some speculations
If left evolve without merging, produce r >10 at z=0 No population exist with so large clustering and number density They have to merge, reducing number density and clustering at short scales (likely, because of large grouping/occupation numbers) Forming ellipticals at z>2, already relatively old, in multiple mergings ? Indeed, K20 has shown that the current formation paradigm (spheroidal formation in nearly equal sized merging spirals) has serious drawbacks: fails number density of red galaxies at z>1 (EROs) underpredict the abundance of z>1 luminous galaxies o
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.