Presentation is loading. Please wait.

Presentation is loading. Please wait.

Multiplying Matrices.

Similar presentations


Presentation on theme: "Multiplying Matrices."— Presentation transcript:

1 Multiplying Matrices

2 Scalar Multiplication - each element in a matrix is multiplied by a constant.

3 **Multiply rows times columns.
**You can only multiply if the number of columns in the 1st matrix is equal to the number of rows in the 2nd matrix. They must match. Dimensions: 3 x 2 2 x 3 The dimensions of your answer.

4 Examples: 2(3) + -1(5) 2(-9) + -1(7) 2(2) + -1(-6) 3(3) + 4(5)
3(-9) + 4(7) 3(2) + 4(-6)

5 *They don’t match so can’t be multiplied together.*
Dimensions: 2 x x 2 *They don’t match so can’t be multiplied together.*

6 2 x 2 2 x 2 *Answer should be a 2 x 2 0(4) + (-1)(-2) 0(-3) + (-1)(5)
1(4) + 0(-2) 1(-3) +0(5)

7 Determinants

8 **To find a determinant you must have a SQUARE MATRIX!!**
Determinant - a square array of numbers or variables enclosed between parallel vertical bars. **To find a determinant you must have a SQUARE MATRIX!!** Finding a 2 x 2 determinant:

9 Find the determinant:

10 Finding a 3x3 determinant: Diagonal method
Step 1: Rewrite first two columns of the matrix.

11 126 - (-52) 126 + 52 = 178 Step 2: multiply diagonals going up!
-224 +10 +162 = -52 Step 2: multiply diagonals going up! Step 3: multiply diagonals going down! +12 -126 +240 =126 Step 4: Bottom minus top! 126 - (-52) = 178

12 38 - 38 = 0 Step 1: multiply diagonals going up!
-18 +50 +6 = 38 Step 1: multiply diagonals going up! Step 2: multiply diagonals going down! - 15 45 + 8 = 38 Step 3: Bottom minus top! = 0

13 Expansion of a Third-Order Determinant

14 example: Evaluate using expansion by minors.

15

16 You try… Page 202 #’s 7 – 10 Page 209 #’s 12 – 22 evens


Download ppt "Multiplying Matrices."

Similar presentations


Ads by Google