Presentation is loading. Please wait.

Presentation is loading. Please wait.

What is a gene? Prokaryotic Genes PROMOTER 3’ 5’ 3’ (-35) (-10)

Similar presentations


Presentation on theme: "What is a gene? Prokaryotic Genes PROMOTER 3’ 5’ 3’ (-35) (-10)"— Presentation transcript:

1 What is a gene? Prokaryotic Genes PROMOTER 3’ 5’ 3’ (-35) (-10)
antisense ---TTGACAT------TATAAT AT-/-AGGAGGT-/-ATG CCC CTT TTG TGA ---AACTGTA------ATATTA TA-/-TCCTCCA-/-TAC GGG GAA AAC ATT sense 3’ (-35) (-10) RIBOSOME BINDING SITE 5’ 5’ 3’ U-/-AGGAGGU-/-AUG CCC CUU UUG UGA Met Pro leu leu stp When all of these rules are satisfied then A segment of DNA will generate an RNA which will then be read by a ribosome and be translated into a protein.

2 Reading the genetic code
A T G T T T A A A T A G C C C 5’ 3’ C A T A A A T T T C T A G G G 5’ 3’ A T G T T T A A A T A G C C C 5’ 3’ 5’ 3’ A U G U U U A A A U A G C C C 5’ 3’ C A T A A A T T T C T A G G G A U G U U U A A A U A G C C C 5’ 3’ U A C Met A A A Phe U U U Lys S T P

3 No Gaps A U G U U U A A A U A G C C C 5’ 3’ U A C Met A A A Phe U U U Lys S T P A U G U U U A A A U A G C C C 5’ 3’ U A C Met A A U Asn U U A Leu

4 No overlaps A U G A A A C C C U A G 5’ 3’ U A C Met U U U Lys G G G Pro S T P A U G A A A C C C U A G 5’ 3’ U A C Met U U U Lys U G G Trp

5 The GENETIC CODE The code is a three letter code. Second letter U C A
UUU UUC UUA UUG CUU CUC CUA CUG AUU AUC AUA AUG GUU GUC GUA GUG UCU UCC UCA UCG CCU CCC CCA CCG ACU ACC ACA ACG GCU GCC GCA GCG UAU UAC UAA UAG CAU CAC CAA CAG AAU AAC AAA AAG GAU GAC GAA GAG UGU UGC UGA UGG CGU CGC CGA CGG AGU AGC AGA AGG GGU GGC GGA GGG U C A G Phe Tyr Cys U Ser STOP STOP Leu Trp His C Arg Pro Leu Gln First letter Third letter Asn Ser Ile A Thr Lys Arg Met Asp G Val Ala Gly Glu

6 xxxxxx

7 Mutations Most mutations are harmful in their effects; only rarely are mutations beneficial. A gene with one wild-type allele is monomorphic; a gene with two or more wild-type alleles is polymorphic. The vast majority of traits are determined by alleles of more than one gene. This means that most traits are multifactorial traits. A Heterogeneous Trait is one that may be caused by mutations in more than one gene. Human deafness is an example of a heterogeneous trait: Mutations in any of at least 50 genes lead to deafness. An important class of mutations are conditional mutations- (Environment affects Phenotype). Conditional mutations are those that express their associated phenotype only under some conditions (restrictive conditions) and not others (permissive conditions). Conditional lethal mutations are common. Temperature-sensitive conditional mutations are invaluable in genetic research.

8 Generation of mutations
Spontaneous mutations Replication induced mutations of DNA Usually base substitutions (Most errors are corrected) Meiosis- segregation defects or defects during crossing over can induce mutations Small additions and deletions AND Large changes as well Environment induced changes Exposure to physical mutagens - Radioactivity or chemicals Depurination (removal of A or G) Repair results in random substitution during replication Deamination (removal of amino group of base) (nitrous acid) Cytosine--uracil--bp adenine--replication-- Oxidation (oxoG) guanine--oxoguanine--bp adenine--replication -- Base analog incorporation during replication BU-T Intercalating agents

9 Mutation rate There are approximately 1013 cells in the human body
Each cell receives 1-10,000 DNA lesions per day (Lindahl and Barnes 2000). Almost all are repaired!! Most pervasive mutagen is UV. 100,000 lesions per exposed cell per hour (Jackson and Bartek 2009). Ionizing agents (X-rays/g-rays) are most toxic because they generate double strand breaks (Ward 1988). Chromosome instability (gain or loss of entire segments) is frequent - 40% of imbalances are entire arm imbalance while 45% are terminal segment imbalance (double strand break, nondysjunction etc) Sequencing 179 humans as part of the 1000 genome project: On average, each person is found to carry approximately 250 to 300 loss-of-function variants in genes of which 50 are in genes previously implicated in genetic disorders. Each individual on average has: 1.3 million short indels (1-10,000 bp) and 20,000 large sequence variations (>10,000 bp). Variation detected by the project is not evenly distributed across the genome: certain regions, containing repetitive sequences (sub-telomeres etc), show high rates of indels.

10 Sequencing the whole genomes of a family (2010 Science 328 636).
98 crossovers in maternal genome 57 crossovers in paternal genome Mutation rate is 1x10-8 per position per haploid genome (human genome is 3x109 bp) It was calculated that there are ~70 new mutations in each diploid human genome Some sites such as CpG sites mutate at a rate 11 times higher than other sites Exome sequencing of 2440 individuals (Science ) Each person has ~100 loss of function mutations (~35 nonsense). 20 loss of function mutations are homozygous Some alterations in sequence concentrate in specific geographic populations. Rare changes are population specific and their frequencies vary for each geographic population

11 This means that most traits are multifactorial.
Most mutations are harmful in their effects; only rarely are mutations beneficial. A gene with one wild-type allele is monomorphic; a gene with two or more wild-type alleles is polymorphic. The vast majority of traits are determined by alleles of more than one gene. This means that most traits are multifactorial. A Heterogeneous Trait is One That May be caused by mutations in more than one gene. Human deafness is an example of a heterogeneous trait: mutations in any of at least 50 genes lead to deafness. (How can one tell if two deaf individuals carry mutations in the same gene or mutations in different genes?) An important class of mutations are conditional mutations. In these mutants the Environment affects Phenotype. Conditional mutations are those that express their associated phenotype only under some conditions (restrictive conditions) and not others (permissive conditions). Conditional lethal mutations are common. Temperature-sensitive conditional mutations are invaluable in genetic research.

12 NNN AUG UUU AGC UUU AGC UUU AGC NNN Met Phe Ser Phe Ser Phe Ser
Frameshift mutations A single base-pair deletion or insertion results in a change in the reading frame NNN AUG UUU AGC UUU AGC UUU AGC NNN Met Phe Ser Phe Ser Phe Ser Delete C AUG UUU AGU UUA GCU UUA GC Met Phe Ser Leu Ala Leu Insert C AUG UUU AGC CUU UAG CUU UAG C Met Phe Ser Leu STOP

13 NNNAUGUUUAGCUUUAGCUUUAGCNNN …MetPheSerPheSerPheSer…
Frameshift mutations A single base-pair deletion or insertion results in a change in the reading frame NNNAUGUUUAGCUUUAGCUUUAGCNNN …MetPheSerPheSerPheSer… …CysLeuAlaLeuAlaLeu… …ValStpLeuStpLeuStp… Delete C AUG UUU AGU UUA GCU UUA GC Met Phe Ser Leu Ala Leu Insert C AUG UUU AGC CUU UAG CUU UAG C Met Phe Ser Leu STOP

14 Frameshift mutations- Deletion
A single base-pair deletion or insertion results in a change in the reading frame AUG UUU AGC UUU AGC UUU AGC Met Phe Ser Phe Ser Phe Ser Delete C AUG UUU AGU UUA GCU UUA GC Met Phe Ser Leu Ala Leu Delete GC AUG UUU AUU UAG CUU UAG C Met Phe Ile Stp Delete AGC AUG UUU UUU AGC UUU AGC Met Phe Phe Ser Phe Ser

15 Frameshift mutations-Insertion
A single base-pair deletion or insertion results in a change in the reading frame AUG UUU AGC UUU AGC UUU AGC Met Phe Ser Phe Ser Phe Ser Insert C AUG UUU AGC CUU UAG CUU UAG C Met Phe Ser Leu STOP Insert CC AUG UUU AGC CCU UUA GCU UUA GC Met Phe Ser Pro Leu Ala Leu Insert CCC AUG UUU AGC CCC UUU AGC UUU AGC Met Phe Ser Pro Phe Ser Phe Ser

16 Missense mutations UUU UUU UGC UUU UUU WT Phe Phe Cys Phe Phe
Missense mutations alters ONE codon so that it encodes a different amino acid UUU UUU UGC UUU UUU WT Phe Phe Cys Phe Phe UUU UUU UGG UUU UUU mut Phe Phe Trp Phe Phe

17 Consequences of Missense Mutations
Missense mutations alter one of the many amino acids that make a protein Its consequences depend on which amino acid is altered Conservative mutations: K to R Nonconservative mutations: K to E Surface Vs buried Mutations in globular domains Vs un structured tails Silent mutations Mutations in non-coding regions Nonsense mutations

18 AUG UUU AGC UUU AGC UUU AGC WT Met Phe Ser Phe Ser Phe Ser
Silent Mutations Silent mutations do not alter the amino acid sequence! The Genetic code is degenerate! AUG UUU AGC UUU AGC UUU AGC WT Met Phe Ser Phe Ser Phe Ser AUG UUC AGC UUU AGC UUU AGC Mut Mutations that occur in introns are also silent Mutations that occur in non-genic regions are often silent

19 Mutations in non-protein coding regions
Mutations in the promoter, splicing junction or ribosome binding site are also mutagenic Reduced expression of mRNA might result in reduced levels of proteins OR Increased expression of mRNA might result in increased levels of protein Mutations in splicing junctions may also be mutagenic improperly spliced mRNA will result in the intron being translated Mutations in tRNA or aminoacyl-tRNA synthase are mutagenic

20 UUU UUU UGC UUU UUU Phe Phe Cys Phe Phe UUU UUU UGA UUU UUU
Nonsense mutations Nonsense mutations alter one codon so that it now encodes for a STOP codon UUU UUU UGC UUU UUU Phe Phe Cys Phe Phe UUU UUU UGA UUU UUU Phe Phe STOP Nonsense mutations insert a stop codon which results in premature termination Truncated polypeptide usually results in loss of function for polypeptide

21 There are NO tRNAs in cells with anti-codons that recognize STOP codons in mRNA
What happens if there is a mutation in the anti-codon loop of a specific tRNA Gene that allows a tRNA to recognize a stop codon

22 Nonsense suppressor mutations!
These are the result of a mutation in the anti-codon loop of a specific tRNA Gene It allows the tRNA to recognize a nonsense codon and base pair with it. DNA Gene encoding tRNATRP Point mutation occurs in the anticodon loop OF THE tRNA This allows this tRNA to base pair with a stop codon and ? AUG Trp AUG Trp AUC Trp ---UAC---UAG---UAA --UAC---UAG---UAA Normal tRNA Mutant tRNA

23 Nonsense suppressor --- UUU UUU UAG UUU UUU ----- --- Phe Phe STOP
Trp-tRNA has mutation In anticodon This allows it to pair with a stop codon 5’--- UUU UUU UAG UUU UUU UAA-----3’ AUC Trp AAA Met Ala Phe --- Phe Phe Trp Phe Phe | A mutant protein that is larger than normal will be synthesized!!

24 Nonsense and Nonsense suppressor
--- UUU UUU CAG UUU UUU ----- --- Phe Phe Gln Phe Phe --- Nonsense mutation --- UUU UUU UAG UUU UUU ----- --- Phe Phe STOP AUC Trp ---UAG--- What will happen if an individual carries both a nonsense mutation in a gene and a nonsense suppressor mutation in the anticodon loop of one of the trp-tRNA genes. 5’--- UUU UUU UAG UUU UUU ’ AUC Trp AAA Met Ala Phe Phe Phe Trp Phe Phe

25

26 Methods used to study mutations
Gross chromosomal changes- deletions, insertions, inversions, translocations Cytology- microscopy- karyotype Small mutations Small deletions, insertions and point mutations Recombinant DNA technologies

27 Recombinant DNA technology
When genes are mutated - proteins are mutated- DISEASE STATES OCCUR Sickle cell Anemia Globin 2 alpha globin chains 2 beta globin chains Mol wt daltons xfour = daltons Single point mutation in beta-globin Converts Glu to Val at position 6 Need to know mutation Need to look at genes of individuals Genes lie buried in 6billion base pairs of DNA (46 chromosomes). Molecular analyses necessary Take advantage of enzymes and reactions that naturally occur in bacteria


Download ppt "What is a gene? Prokaryotic Genes PROMOTER 3’ 5’ 3’ (-35) (-10)"

Similar presentations


Ads by Google