Presentation is loading. Please wait.

Presentation is loading. Please wait.

Observational Constraints on Viable f(R) Gravity Models

Similar presentations


Presentation on theme: "Observational Constraints on Viable f(R) Gravity Models"β€” Presentation transcript:

1 Observational Constraints on Viable f(R) Gravity Models
Yow-Chun Chen (National Tsing-Hua University) Collaborators: Chao-Qiang Geng, Chung-Chi Lee

2 Outline f(R) gravity Viable f(R) gravity models
Observational Constraints on Viable f(R) Gravity Models

3 f(R) gravity In f(R) gravity, the Ricci scalar R in the Einstein-Hilbert action is extended to an arbitrary function f(R). Modified Einstein-Hilbert action: 𝑆=∫ β…† 4 π‘₯ βˆ’π‘” 𝑓 𝑅 16πœ‹πΊ + 𝑆 π‘š Taking variation of the action with resect to 𝑔 πœ‡πœˆ , we get the modified Einstein equation: 𝑓 𝑅 𝐺 πœ‡πœˆ = ΞΊ 2 𝑇 πœ‡πœˆ π‘š βˆ’ 1 2 𝑔 π‘’πœˆ 𝑓 𝑅 π‘…βˆ’π‘“ + 𝛻 πœ‡ 𝛻 𝜈 𝑓 𝑅 βˆ’ 𝑔 π‘’πœˆ β–‘ 𝑓 𝑅 , where 𝑓 𝑅 ≑ ⅆ𝑓 𝑅 ⅆ𝑅 and 𝐺 πœ‡πœˆ = 𝑅 πœ‡πœˆ βˆ’ 1 2 𝑔 πœ‡π‘£ 𝑅

4 Conditions for viable f(R) gravity model
1. Possess positive effective gravitational constants and exhibit stable cosmological perturbations: ⅆ𝑓 𝑅 ⅆ𝑅 >0 and β…† 2 𝑓 𝑅 β…† 𝑅 2 >0 for 𝑅β‰₯ 𝑅 0 2. Asymptotic behavior to the 𝛬CDM model in the large curvature regime: 𝑓 𝑅 β†’π‘…βˆ’2𝛬 for 𝑅β‰₯ 𝑅 0 3. Presence Stability of the late-time de Sitter point 4. Passing the local system constraints

5 Viable f(R) Gravity Models
Exponential gravity model: 𝑓 𝑅 =π‘…βˆ’π›½ 𝑅 π‘β„Ž 𝐸 1βˆ’ β…‡ βˆ’π‘…βˆ• 𝑅 π‘β„Ž 𝐸 Tsujikawa model: 𝑓 𝑅 =π‘…βˆ’πœ‡ 𝑅 π‘β„Ž 𝑇 tanh 𝑅 𝑅 π‘β„Ž 𝑇 Starobinsky model: 𝑓 𝑅 =π‘…βˆ’πœ† 𝑅 π‘β„Ž 𝑆 1βˆ’ 1+ 𝑅 2 𝑅 π‘β„Ž 𝑆 2 βˆ’π‘› Hu-Sawicki model: 𝑓 𝑅 =π‘…βˆ’ 𝑅 π‘β„Ž 𝐻𝑆 𝑐 1 π‘…βˆ• 𝑅 π‘β„Ž 𝐻𝑆 𝑝 𝑐 2 π‘…βˆ• 𝑅 π‘β„Ž 𝐻𝑆 𝑝 +1

6 Background Evolution By the continuity equation: 𝜌 𝐷𝐸 +3𝐻 1+ 𝑀 𝐷𝐸 𝜌 𝐷𝐸 =0 we can derive the equation of state for dark energy: 𝑀 𝐷𝐸 ≑ 𝑃 𝐷𝐸 𝜌 𝐷𝐸 =βˆ’1βˆ’ 𝑦 𝐻 β…† 𝑦 𝐻 β…† ln π‘Ž where the introduced variables: 𝑦 𝐻 ≑ 𝜌 𝐷𝐸 𝜌 π‘š 0 = 𝐻 2 π‘š 2 βˆ’ π‘Ž βˆ’3 βˆ’πœ’ π‘Ž βˆ’4 , 𝑦 𝑅 = 𝑅 π‘š 2 βˆ’3 π‘Ž βˆ’3 with: π‘š 2 ≑ πœ… 2 𝜌 π‘š 0 3 , πœ’β‰‘ 𝜌 π‘Ÿ 0 𝜌 π‘š 0

7 Observational data Code utilized: CAMB and MGCAMB CosmoMC: Markov-Chain Monte-Carlo Data utilized: BAO (baryon acoustic oscillations) data Planck 2015 likelihoods SNLS (Supernova Legacy Survey) data

8 Observational Constraints on Viable f(R) Gravity Models
𝛬CDM model Exponential Tsujikawa

9 Observational Constraints on Viable f(R) Gravity Models
Starobinsky (n = 1) Starobinsky (n = 2)

10 Observational Constraints on Viable f(R) Gravity Models
Hu-Sawicki (p = 2) Hu-Sawicki (p = 4)

11 Observational Constraints on Viable f(R) Gravity Models 𝛬CDM background Allowed regions:1 𝜎 (68%) confidence level for model parameter 𝜎 (95%) confidence level for the rest Parameter 𝛬CD M Exponential Tsujikawa Starobinsky (n=1) 100 𝛺 𝑏 β„Ž 2 2.23Β±0.03 2.23 βˆ’ 𝛺 𝑐 β„Ž 2 0.118Β±0.002 0.117 βˆ’ 𝛴 π‘š 𝜈 < 0.20 eV < 0.21 eV < 0.18 eV < 0.25 eV model parameter βˆ’ 0.685 βˆ’ 0.377 βˆ’ Best fit πœ’ 2 Parameter Starobinsky (n=2) Hu-Sawicki (p=2) Hu-Sawicki (p=4) 𝛺 𝑏 β„Ž 2 2.23Β±0.03 𝛺 𝑐 β„Ž 2 0.118Β±0.002 0.117 βˆ’ 𝛴 π‘š 𝜈 < 0.20 eV < 0.25 eV model parameter βˆ’ 0.373 βˆ’ βˆ’ Best fit πœ’ 2

12 Observational Constraints on Viable f(R) Gravity Models modify background Allowed regions:1 𝜎 (68%) confidence level for model parameter 𝜎 (95%) confidence level for the rest Parameter 𝛬CD M Exponential Tsujikawa Starobinsky (n=1) 100 𝛺 𝑏 β„Ž 2 2.23Β±0.03 2.23 βˆ’ 𝛺 𝑐 β„Ž 2 0.118Β±0.002 0.118 βˆ’ 𝛴 π‘š 𝜈 < 0.20 eV < 0.22 eV model parameter βˆ’ βˆ’ βˆ’ Best fit πœ’ 2 Parameter Starobinsky (n=2) Hu-Sawicki (p=2) Hu-Sawicki (p=4) 𝛺 𝑏 β„Ž 2 2.23Β±0.03 2.24 βˆ’ 𝛺 𝑐 β„Ž 2 0.118Β±0.002 0.117 βˆ’ 𝛴 π‘š 𝜈 < 0.21 eV < 0.25 eV < 0.20 eV model parameter βˆ’ βˆ’ βˆ’ Best fit πœ’ 2


Download ppt "Observational Constraints on Viable f(R) Gravity Models"

Similar presentations


Ads by Google