Download presentation
Presentation is loading. Please wait.
Published byAbraham Flowers Modified over 6 years ago
1
Observational Constraints on Viable f(R) Gravity Models
Yow-Chun Chen (National Tsing-Hua University) Collaborators: Chao-Qiang Geng, Chung-Chi Lee
2
Outline f(R) gravity Viable f(R) gravity models
Observational Constraints on Viable f(R) Gravity Models
3
f(R) gravity In f(R) gravity, the Ricci scalar R in the Einstein-Hilbert action is extended to an arbitrary function f(R). Modified Einstein-Hilbert action: π=β« β
4 π₯ βπ π π
16ππΊ + π π Taking variation of the action with resect to π ππ , we get the modified Einstein equation: π π
πΊ ππ = ΞΊ 2 π ππ π β 1 2 π π’π π π
π
βπ + π» π π» π π π
β π π’π β‘ π π
, where π π
β‘ β
π π
β
π
and πΊ ππ = π
ππ β 1 2 π ππ£ π
4
Conditions for viable f(R) gravity model
1. Possess positive effective gravitational constants and exhibit stable cosmological perturbations: β
π π
β
π
>0 and β
2 π π
β
π
2 >0 for π
β₯ π
0 2. Asymptotic behavior to the π¬CDM model in the large curvature regime: π π
βπ
β2π¬ for π
β₯ π
0 3. Presence Stability of the late-time de Sitter point 4. Passing the local system constraints
5
Viable f(R) Gravity Models
Exponential gravity model: π π
=π
βπ½ π
πβ πΈ 1β β
βπ
β π
πβ πΈ Tsujikawa model: π π
=π
βπ π
πβ π tanh π
π
πβ π Starobinsky model: π π
=π
βπ π
πβ π 1β 1+ π
2 π
πβ π 2 βπ Hu-Sawicki model: π π
=π
β π
πβ π»π π 1 π
β π
πβ π»π π π 2 π
β π
πβ π»π π +1
6
Background Evolution By the continuity equation: π π·πΈ +3π» 1+ π€ π·πΈ π π·πΈ =0 we can derive the equation of state for dark energy: π€ π·πΈ β‘ π π·πΈ π π·πΈ =β1β π¦ π» β
π¦ π» β
ln π where the introduced variables: π¦ π» β‘ π π·πΈ π π 0 = π» 2 π 2 β π β3 βπ π β4 , π¦ π
= π
π 2 β3 π β3 with: π 2 β‘ π
2 π π 0 3 , πβ‘ π π 0 π π 0
7
Observational data Code utilized: CAMB and MGCAMB CosmoMC: Markov-Chain Monte-Carlo Data utilized: BAO (baryon acoustic oscillations) data Planck 2015 likelihoods SNLS (Supernova Legacy Survey) data
8
Observational Constraints on Viable f(R) Gravity Models
π¬CDM model Exponential Tsujikawa
9
Observational Constraints on Viable f(R) Gravity Models
Starobinsky (n = 1) Starobinsky (n = 2)
10
Observational Constraints on Viable f(R) Gravity Models
Hu-Sawicki (p = 2) Hu-Sawicki (p = 4)
11
Observational Constraints on Viable f(R) Gravity Models π¬CDM background Allowed regions:1 π (68%) confidence level for model parameter π (95%) confidence level for the rest Parameter π¬CD M Exponential Tsujikawa Starobinsky (n=1) 100 πΊ π β 2 2.23Β±0.03 2.23 β πΊ π β 2 0.118Β±0.002 0.117 β π΄ π π < 0.20 eV < 0.21 eV < 0.18 eV < 0.25 eV model parameter β 0.685 β 0.377 β Best fit π 2 Parameter Starobinsky (n=2) Hu-Sawicki (p=2) Hu-Sawicki (p=4) πΊ π β 2 2.23Β±0.03 πΊ π β 2 0.118Β±0.002 0.117 β π΄ π π < 0.20 eV < 0.25 eV model parameter β 0.373 β β Best fit π 2
12
Observational Constraints on Viable f(R) Gravity Models modify background Allowed regions:1 π (68%) confidence level for model parameter π (95%) confidence level for the rest Parameter π¬CD M Exponential Tsujikawa Starobinsky (n=1) 100 πΊ π β 2 2.23Β±0.03 2.23 β πΊ π β 2 0.118Β±0.002 0.118 β π΄ π π < 0.20 eV < 0.22 eV model parameter β β β Best fit π 2 Parameter Starobinsky (n=2) Hu-Sawicki (p=2) Hu-Sawicki (p=4) πΊ π β 2 2.23Β±0.03 2.24 β πΊ π β 2 0.118Β±0.002 0.117 β π΄ π π < 0.21 eV < 0.25 eV < 0.20 eV model parameter β β β Best fit π 2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.