Presentation is loading. Please wait.

Presentation is loading. Please wait.

BY SIBY SEBASTIAN PGT(MATHS)

Similar presentations


Presentation on theme: "BY SIBY SEBASTIAN PGT(MATHS)"β€” Presentation transcript:

1 BY SIBY SEBASTIAN PGT(MATHS)
TRIGONOMETRIC FUNCTIONS BASIC IDEAS BY SIBY SEBASTIAN PGT(MATHS) siby sebastian pgt maths

2 Basic Terms The rotation of the terminal side of an angle counterclockwise. The rotation of the terminal side is clockwise. A C B siby sebastian pgt maths

3 Angle Measures and Types of Angles
The most common unit for measuring angles is the degree. (One rotation = 360o) ΒΌ rotation = 90o, Β½ rotation = 180o, π‘Ÿπ‘œπ‘‘π‘Žπ‘‘π‘–π‘œπ‘›= 1 0 Angle and measure of angle are not the same, but it is common to say that an angle = its measure Types of angles named on basis of measure: siby sebastian pgt maths

4 Measuring Angles So far we have measured angles in degrees
For most practical applications of trigonometry this is the preferred measure For advanced mathematics courses it is more common to measure angles in units called β€œradian measure” siby sebastian pgt maths

5 siby sebastian pgt maths
Radian Measure An angle with its vertex at the center of a circle of radius β€˜r’ units subtended by an arc of length β€˜r’ unit is 1 radian. (1 rad) siby sebastian pgt maths

6 Comments on Radian Measure
Since a complete rotation of a ray back to the initial position generates a circle of radius β€œr”, and the circumference of that circle (arc length) is 2𝝅𝒓, there are 2𝝅 radians in a complete rotation Based on the reasoning just discussed: 2𝝅 rad = 3600 , 𝝅 rad = 1800 1 rad = πŸπŸ–πŸŽ 𝟎 𝝅 β‰ˆ πŸ“πŸ•.πŸ‘ 𝟎 𝟏 𝟎 = 𝝅 𝒓𝒂𝒅 πŸπŸ–πŸŽ siby sebastian pgt maths

7 Conversion Between Degrees and Radians
Multiply a degree measure by 𝝅 πŸπŸ–πŸŽ and simplify to convert to radians. Multiply a radian measure by πŸπŸ–πŸŽ 𝝅 and simplify to convert to degrees. siby sebastian pgt maths

8 Convert Degrees to Radians
πŸ”πŸŽ 𝟎 = πŸ”πŸŽ 𝟎 𝒙 𝝅 πŸπŸ–πŸŽ 𝟎 π’“π’‚π’…π’Šπ’‚π’= 𝝅 πŸ‘ π’“π’‚π’…π’Šπ’‚π’π’” b) = 𝟐𝟐𝟏.πŸ• 𝟎 𝒙 𝝅 πŸπŸ–πŸŽ 𝟎 π’“π’‚π’…β‰ˆπŸ‘.πŸ–πŸ—πŸ” π’“π’‚π’…π’Šπ’‚π’π’” siby sebastian pgt maths

9 Convert Radians to Degrees
πŸπŸπ… πŸ’ 𝒓𝒂𝒅 = πŸπŸπ… πŸ’ 𝒓𝒂𝒅 x πŸπŸ–πŸŽ 𝟎 𝝅 𝒓𝒂𝒅 = πŸ’πŸ—πŸ“ 𝟎 b) 3.25 rad 3.25 rad = πŸ‘.πŸπŸ“ 𝒓𝒂𝒅 𝟏 x πŸπŸ–πŸŽ 𝟎 𝝅 𝒓𝒂𝒅 β‰ˆ πŸπŸ–πŸ”.𝟐 𝟎 siby sebastian pgt maths

10 Equivalent Angles in Degrees and Radians
siby sebastian pgt maths

11 Trigonometric Functions
In a circle of radius β€˜r’ units and if P(x,y) is a point on the circle then the trigonometric functions are defined by sin𝜽= π’š 𝒓 cosec𝜽= 𝒓 π’š cos𝜽= 𝒙 𝒓 sec𝜽= 𝒓 𝒙 tan𝜽= 𝒙 π’š cot = π’š 𝒙 r y x siby sebastian pgt maths

12 Trigonometric Functions
β€œCircular Functions” are named as trig functions (sine, cosine, tangent, etc.) The domain of trig functions is a set of angles measured either in degrees or radians The domain of circular functions is the set of real numbers The value of a trig function of a specific angle in its domain is a ratio of real numbers The value of circular function of a real number β€œx” is the same as the corresponding trig function of β€œx radians” siby sebastian pgt maths

13 Exponential Notation and Trigonometric Functions
sin2 A = (sin A)2 tan3A = (tanA)3 Sec5A = (secA)5 siby sebastian pgt maths

14 Signs of Trig Functions by Quadrant of Angle
Considering the following three functions and the sign of x, y and r in each quadrant, which functions are positive in each quadrant? siby sebastian pgt maths

15 β€œAll students take calculus”
Mnemonic Techniques It will help to memorize by learning these words in Quadrants I - IV: β€œAll students take calculus” And remembering reciprocal identities Trig functions are negative in quadrants where they are not positive siby sebastian pgt maths

16 Domain and Range of Sine Function
Given an angle A in standard position, and (x,y) a point on the terminal side a distance of r > 0 from the origin, sin A = y/r Domain of sine function is the set of all A for which y/r is a real number. Since r can’t be zero, y/r is always a real number and domain is β€œany angle” Range of sine function is the set of all y/r, but since y is less than or equal to r, this ratio will always be equal to 1 or will be a proper fraction, positive or negative: siby sebastian pgt maths

17 siby sebastian pgt maths
GRAPH OF sine FUNCTION Click here to see how sin function is generated siby sebastian pgt maths

18 Domain and Range of Cosine Function
Given an angle A in standard position, and (x,y) a point on the terminal side a distance of r > 0 from the origin, cos A = x/r Domain of cosine function is the set of all A for which x/r is a real number. Since r can’t be zero, x/r is always a real number and domain is β€œany angle” Range of cosine function is the set of all x/r, but since x is less than or equal to r, this ratio will always be equal to 1, -1 or will be a proper fraction, positive or negative: siby sebastian pgt maths

19 GRAPH OF cosine FUNCTION
Click here to see how cosine function is generated siby sebastian pgt maths

20 Domain and Range of Tangent Function
Given an angle A in standard position, and (x,y) a point on the terminal side a distance of r > 0 from the origin, tan A = y/x Domain of tangent function is the set of all A for which y/x is a real number. Tangent will be undefined when x = 0, therefore domain is all angles except for odd multiples of 90o Range of tangent function is the set of all y/x, but since all of these are possible: x=y, x<y, x>y, this ratio can be any positive or negative real number: siby sebastian pgt maths

21 GRAPH OF tangent FUNCTION
Click here to see how tangent function is generated siby sebastian pgt maths

22 Domain and Range of Cosecant Function
Given an angle A in standard position, and (x,y) a point on the terminal side a distance of r > 0 from the origin, csc A = r/y Domain of cosecant function is the set of all A for which r/y is a real number. Cosecant will be undefined when y = 0, therefore domain is all angles except for integer multiples of 180o Range of cosecant function is the reciprocal of the range of the sine function. Reciprocals of numbers between -1 and 1 are: siby sebastian pgt maths

23 GRAPH OF cosecant FUNCTION
siby sebastian pgt maths

24 Domain and Range of Secant Function
Given an angle A in standard position, and (x,y) a point on the terminal side a distance of r > 0 from the origin, sec A = r/x Domain of secant function is the set of all A for which r/x is a real number. Secant will be undefined when x = 0, therefore domain is all angles except for odd multiples of 90o Range of secant function is the reciprocal of the range of the cosine function. Reciprocals of numbers between -1 and 1 are: siby sebastian pgt maths

25 GRAPH OF secant FUNCTION
siby sebastian pgt maths

26 Domain and Range of Cotangent Function
Given an angle A in standard position, and (x,y) a point on the terminal side a distance of r > 0 from the origin, cot A = x/y Domain of cotangent function is the set of all A for which x/y is a real number. Cotangent will be undefined when y = 0, therefore domain is all angles except for integer multiples of 180o Range of cotangent function is the reciprocal of the range of the tangent function. The reciprocal of the set of numbers between negative infinity and positive infinity is: siby sebastian pgt maths

27 GRAPH OF cotangent FUNCTION
siby sebastian pgt maths

28 Ranges of Trigonometric Functions
For any angle  for which the indicated functions exist: ο€­1 ο‚£ sin  ο‚£ 1 ο€­1 ο‚£ cos  ο‚£ 1 tan  and cot  can take any real number sec  ο‚£ ο€­1 or sec  ο‚³ 1 csc  ο‚£ ο€­1 or csc  ο‚³ 1. Note that sec  and csc  are never between ο€­1 and 1 siby sebastian pgt maths

29 siby sebastian pgt maths
Periodic Properties siby sebastian pgt maths

30 Theorem Even-Odd Properties
siby sebastian pgt maths

31 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
1.sin( 𝝅 𝟐 βˆ’π’™)=𝒄𝒐𝒔𝒙 2.cos( 𝝅 𝟐 βˆ’π’™) = sinx 3.tan( 𝝅 𝟐 βˆ’π’™) = cotx siby sebastian pgt maths

32 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
4.sin( 𝝅 𝟐 +𝒙)=𝒄𝒐𝒔𝒙 5.cos( 𝝅 𝟐 +𝒙) = - sinx 6.tan( 𝝅 𝟐 +𝒙) = - cotx siby sebastian pgt maths

33 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
7.sin(π›‘βˆ’π’™)=𝐬𝐒𝐧𝐱 8.cos(π›‘βˆ’π’™) = -cosx 9.tan(𝛑 βˆ’π’™) = - tanx siby sebastian pgt maths

34 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
10.sin(𝛑+𝒙)=βˆ’π¬π’π§π± 11.cos(𝛑+𝒙) = -cosx 12.tan(𝛑+𝒙) = tanx siby sebastian pgt maths

35 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
13.sin( πŸ‘π… 𝟐 βˆ’π’™)=βˆ’π’„π’π’”π’™ 14.cos( πŸ‘π… 𝟐 βˆ’π’™) = -sinx 15.tan( πŸ‘π… 𝟐 βˆ’π’™) = cotx siby sebastian pgt maths

36 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
16. sin( πŸ‘π… 𝟐 +𝒙)=βˆ’π’„π’π’”π’™ 17 .cos( πŸ‘π… 𝟐 +𝒙) = sinx 18 .tan( πŸ‘π… 𝟐 +𝒙) = - cotx siby sebastian pgt maths

37 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
19.sin(πŸπ›‘βˆ’π’™)=βˆ’π¬π’π§π± 20.cos(πŸπ›‘βˆ’π’™) = cosx 21.tan(2𝛑 βˆ’π’™) =-tanx siby sebastian pgt maths

38 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
sin2x +cos2x =1 1+tan2x =sec2x 1+cot2x =cosec2x siby sebastian pgt maths

39 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
SUM AND DIFFERENCE OF TWO ANGLES 1.cos(x + y) = cosxcosy – sinxsiny 2.cos(x – y) = cosxcosy + sinxsiny 3.sin(x + y) = sinxcosy + cosxsiny 4.sin( x – y) = sinxcosy - cosxsiny siby sebastian pgt maths

40 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
5.tan(x + y) = 𝒕𝒂𝒏𝒙+π’•π’‚π’π’š πŸβˆ’π’•π’‚π’π’™π’•π’‚π’π’š 6.tan(x – y) = π’•π’‚π’π’™βˆ’π’•π’‚π’π’š 𝟏+π’•π’‚π’π’™π’•π’‚π’π’š 7.cot(x + y) = π’„π’π’•π’™π’„π’π’•π’š βˆ’πŸ π’„π’π’•π’š+𝒄𝒐𝒕𝒙 8.cot(x - y) = π’„π’π’•π’™π’„π’π’•π’š+𝟏 π’„π’π’•π’šβˆ’π’„π’π’•π’™ siby sebastian pgt maths

41 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
PRODUCT AS SUM OR DIFFERENCE 1 .2sinxcosy = sin(x + y) + sin(x – y) 2. 2cosxsiny = sin(x + y) – sin(x – y) 3.2cosxcosy = cos(x + y)+cos(x – y) 4.-2sinxsiny = cos(x + y) – cos(x – y) siby sebastian pgt maths

42 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
SUM OR DIFFERENCE AS PRODUCT 1.sinx + siny = 2sin( 𝒙+π’š 𝟐 )𝒄𝒐𝒔( π’™βˆ’π’š 𝟐 ) 2.sinx – siny = 2cos( 𝒙+π’š 𝟐 )π’”π’Šπ’( π’™βˆ’π’š 𝟐 ) 3.cosx + cosy = 2cos( 𝒙+π’š 𝟐 )𝒄𝒐𝒔( π’™βˆ’π’š 𝟐 ) 4.cosx – cosy = - 2sin( 𝒙+π’š 𝟐 )π’”π’Šπ’( π’™βˆ’π’š 𝟐 ) siby sebastian pgt maths

43 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
MULTIPLE ANGLES 1.sin2x = 2sinxcosx = πŸπ’•π’‚π’π’™ 𝟏+ 𝒕𝒂𝒏 𝟐 𝒙 2.cos2x = cos2x – sin2x = 2cos2x – 1 = 1 – 2sin2x = πŸβˆ’ 𝒕𝒂𝒏 𝟐 𝒙 𝟏+ 𝒕𝒂𝒏 𝟐 𝒙 siby sebastian pgt maths

44 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
3.tan2x = πŸπ’•π’‚π’π’™ πŸβˆ’ 𝒕𝒂𝒏 𝟐 𝒙 4.sin3x = 3sinx – 4sin3x 5.cos3x = 4cos3x – 3cosx 6.tan3x = πŸ‘π’•π’‚π’π’™ βˆ’ 𝒕𝒂𝒏 πŸ‘ 𝒙 πŸβˆ’πŸ‘ 𝒕𝒂𝒏 𝟐 𝒙 siby sebastian pgt maths

45 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
SUB MULTIPLE ANGLES 1.sinx = 2sin 𝒙 𝟐 𝒄𝒐𝒔 𝒙 𝟐 2.cosx = 𝒄𝒐𝒔 𝟐 𝒙 𝟐 βˆ’ π’”π’Šπ’ 𝟐 𝒙 𝟐 3.1- cosx = 2 π’”π’Šπ’ 𝟐 𝒙 𝟐 4.1+cosx = 2 𝒄𝒐𝒔 𝟐 𝒙 𝟐 siby sebastian pgt maths

46 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
GENERAL SOLUTIONS 1.sinx =0 then x= n𝝅, nβˆˆπ’ 2.cosx = 0 then x=(2n + 1) 𝝅 𝟐 , nβˆˆπ’ 3.tanx =0 then x= n𝝅, nβˆˆπ’ siby sebastian pgt maths

47 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
4.Sinx = siny then,x = n𝝅+ (βˆ’πŸ) 𝒏 π’š, nβˆˆπ’ 5.cosx =cosy then, 𝒙=πŸπ’π›‘Β±y ,nβˆˆπ’ 6.tanx = tany then x= n𝝅+π’š, nβˆˆπ’ siby sebastian pgt maths

48 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
Sine Rule 𝒂 π’”π’Šπ’π‘¨ = 𝒃 π’”π’Šπ’π‘© = 𝒄 π’”π’Šπ’π‘ͺ siby sebastian pgt maths

49 BASIC RULES OF TRIGONOMETRIC FUNCTIONS
Cosine Rule cosA = 𝒃 𝟐 + 𝒄 𝟐 βˆ’ 𝒂 𝟐 πŸπ’ƒπ’„ cosB = 𝒄 𝟐 +π’‚βˆ’ 𝒃 𝟐 πŸπ’„π’‚ cosC = 𝒂 𝟐 + 𝒃 𝟐 βˆ’ 𝒄 𝟐 πŸπ’‚π’ƒ siby sebastian pgt maths

50 Finally let us dance together and
enjoy trigonometry Practice & Until you get it. …….. siby sebastian pgt maths


Download ppt "BY SIBY SEBASTIAN PGT(MATHS)"

Similar presentations


Ads by Google