Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 8: Data Communication Fundamentals

Similar presentations


Presentation on theme: "Chapter 8: Data Communication Fundamentals"— Presentation transcript:

1 Chapter 8: Data Communication Fundamentals
Business Data Communications, 4e

2 Three Components of Data Communication
Analog: Continuous value data (sound, light, temperature) Digital: Discrete value (text, integers, symbols) Signal Analog: Continuously varying electromagnetic wave Digital: Series of voltage pulses (square wave) Transmission Analog: Works the same for analog or digital signals Digital: Used only with digital signals

3 Analog Data-->Signal Options
Analog data to analog signal Inexpensive, easy conversion (eg telephone) Data may be shifted to a different part of the available spectrum (multiplexing) Used in traditional analog telephony Analog data to digital signal Requires a codec (encoder/decoder) Allows use of digital telephony, voice mail

4 Digital Data-->Signal Options
Digital data to analog signal Requires modem (modulator/demodulator) Allows use of PSTN to send data Necessary when analog transmission is used Digital data to digital signal Requires CSU/DSU (channel service unit/data service unit) Less expensive when large amounts of data are involved More reliable because no conversion is involved

5 Transmission Choices Analog transmission Digital transmission
only transmits analog signals, without regard for data content attenuation overcome with amplifiers signal is not evaluated or regenerated Digital transmission transmits analog or digital signals uses repeaters rather than amplifiers switching equipment evaluates and regenerates signal

6 Data, Signal, and Transmission Matrix
System A D

7 Advantages of Digital Transmission
The signal is exact Signals can be checked for errors Noise/interference are easily filtered out A variety of services can be offered over one line Higher bandwidth is possible with data compression

8 Why Use Analog Transmission?
Already in place Significantly less expensive Lower attentuation rates Fully sufficient for transmission of voice signals

9 Analog Encoding of Digital Data
Data encoding and decoding technique to represent data using the properties of analog waves Modulation: the conversion of digital signals to analog form Demodulation: the conversion of analog data signals back to digital form

10 Modem An acronym for modulator-demodulator
Uses a constant-frequency signal known as a carrier signal Converts a series of binary voltage pulses into an analog signal by modulating the carrier signal The receiving modem translates the analog signal back into digital data

11 Methods of Modulation Amplitude modulation (AM) or amplitude shift keying (ASK) Frequency modulation (FM) or frequency shift keying (FSK) Phase modulation or phase shift keying (PSK)

12 Amplitude Shift Keying (ASK)
In radio transmission, known as amplitude modulation (AM) The amplitude (or height) of the sine wave varies to transmit the ones and zeros Major disadvantage is that telephone lines are very susceptible to variations in transmission quality that can affect amplitude

13 ASK Illustration 1 1

14 Frequency Shift Keying (FSK)
In radio transmission, known as frequency modulation (FM) Frequency of the carrier wave varies in accordance with the signal to be sent Signal transmitted at constant amplitude More resistant to noise than ASK Less attractive because it requires more analog bandwidth than ASK

15 FSK Illustration 1 1 1

16 Phase Shift Keying (PSK)
Also known as phase modulation (PM) Frequency and amplitude of the carrier signal are kept constant The carrier signal is shifted in phase according to the input data stream Each phase can have a constant value, or value can be based on whether or not phase changes (differential keying)

17 PSK Illustration 1 1

18 Differential Phase Shift Keying (DPSK)
1 1

19 Analog Channel Capacity: BPS vs. Baud
Baud=# of signal changes per second BPS=bits per second In early modems only, baud=BPS Each signal change can represent more than one bit, through complex modulation of amplitude, frequency, and/or phase Increases information-carrying capacity of a channel without increasing bandwidth Increased combinations also leads to increased likelihood of errors

20 Voice Grade Modems

21 Cable Modems

22 DSL Modems

23 Digital Encoding of Analog Data
Primarily used in retransmission devices The sampling theorem: If a signal is sampled at regular intervals of time and at a rate higher than twice the significant signal frequency, the samples contain all the information of the original signal. 8000 samples/sec sufficient for 4000hz

24 Converting Samples to Bits
Quantizing Similar concept to pixelization Breaks wave into pieces, assigns a value in a particular range 8-bit range allows for 256 possible sample levels More bits means greater detail, fewer bits means less detail

25 Codec Coder/Decoder Converts analog signals into a digital form and converts it back to analog signals Where do we find codecs? Sound cards Scanners Voice mail Video capture/conferencing

26 Digital Encoding of Digital Data
Most common, easiest method is different voltage levels for the two binary digits Typically, negative=1 and positive=0 Known as NRZ-L, or nonreturn-to-zero level, because signal never returns to zero, and the voltage during a bit transmission is level

27 Differential NRZ Differential version is NRZI (NRZ, invert on ones)
Change=1, no change=0 Advantage of differential encoding is that it is more reliable to detect a change in polarity than it is to accurately detect a specific level

28 Problems With NRZ Difficult to determine where one bit ends and the next begins In NRZ-L, long strings of ones and zeroes would appear as constant voltage pulses Timing is critical, because any drift results in lack of synchronization and incorrect bit values being transmitted

29 Biphase Alternatives to NRZ
Require at least one transition per bit time, and may even have two Modulation rate is greater, so bandwidth requirements are higher Advantages Synchronization due to predictable transitions Error detection based on absence of a transition

30 Manchester Code Transition in the middle of each bit period
Transition provides clocking and data Low-to-high=1 , high-to-low=0 Used in Ethernet

31 Differential Manchester
Midbit transition is only for clocking Transition at beginning of bit period=0 Transition absent at beginning=1 Has added advantage of differential encoding Used in token-ring

32 Digital Encoding Illustration

33 Digital Interfaces The point at which one device connects to another
Standards define what signals are sent, and how Some standards also define physical connector to be used

34 Generic Communications Interface Illustration

35 DTE and DCE

36 RS-232C (EIA 232C) EIA’s “Recommended Standard” (RS)
Specifies mechanical, electrical, functional, and procedural aspects of the interface Used for connections between DTEs and voice-grade modems, and many other applications

37 EIA-232-D new version of RS-232-C adopted in 1987
improvements in grounding shield, test and loop-back signals the prevalence of RS-232-C in use made it difficult for EIA-232-D to enter into the marketplace

38 RS-449 EIA standard improving on capabilities of RS-232-C
provides for 37-pin connection, cable lengths up to 200 feet, and data rates up to 2 million bps covers functional/procedural portions of R-232-C electrical/mechanical specs covered by RS-422 & RS-423

39 Functional Specifications
Specifies the role of the individual circuits Data circuits in both directions allow full-duplex communication Timing signals allow for synchronous transmission (although asynchronous transmission is more common)

40 Procedural Specifications
Multiple procedures are specified Simple example: exchange of asynchronous data on private line Provides means of attachment between computer and modem Specifies method of transmitting asynchronous data between devices Specifies method of cooperation for exchange of data between devices

41 Mechanical Specifications
25-pin connector with a specific arrangement of leads DTE devices usually have male DB25 connectors while DCE devices have female In practice, fewer than 25 wires are generally used in applications

42 RS-232 DB-25 Connectors DB-25 Female DB-25 Male

43 RS-232 DB-25 Pinouts

44 RS-232 DB-9 Connectors Limited RS-232

45 RS-422 DIN-8 Found on Macs DIN-8 Male DIN-8 Female

46 Electrical Specifications
Specifies signaling between DTE and DCE Uses NRZ-L encoding Voltage < -3V = binary 1 Voltage > +3V = binary 0 Rated for <20Kbps and <15M greater distances and rates are theoretically possible, but not necessarily wise

47 RS-232 Signals (Asynch) Odd Parity Even Parity No Parity


Download ppt "Chapter 8: Data Communication Fundamentals"

Similar presentations


Ads by Google