Download presentation
Presentation is loading. Please wait.
Published byOsborne Johnson Modified over 6 years ago
1
Lecture 8 Logistics Last lecture Last last lecture Today
Midterm 1 week from today Last lecture Verilog Last last lecture K-maps examples K-map high dimension example Don’t cares Today Don’t care (review) POS minimization with K-map Design examples with K-map
2
The “WHY” slide Don’t cares Design examples with K-map
Sometimes the logic output doesn’t matter. When we don’t care if the output is 0 or 1, rather than assigning random outputs, it is best to denote it as “Don’t care.” If you learn how to use the “don’t care’s”, you will be able to build even more efficient circuits than without them. Design examples with K-map Doing K-map is fun, but when it is combined with an actual design problem you will see how k-map fits into the whole scheme of logic design. Class rule: Interrupt when you don’t understand why we are doing something
3
Revisit Don’t cares example: Truth table for a BCD increment-by-1
INPUTS OUTPUTS A B C D W X Y Z X X X X X X X X X X X X X X X X X X X X X X X X Function F computes the next number in a BCD sequence If the input is 00102, the output is 00112 BCD encodes decimal digits 0–9 as 00002–10012 Don’t care about binary numbers 10102–11112
4
Example: with don’t cares
F(A,B,C,D) = m(1,3,5,7,9) + d(6,12,13) F = A'D + B'C'D without using don't cares F = A'D + C'D using don't cares A AB 00 01 11 10 CD Assign X == "1" allows a 2-cube rather than a 1-cube 00 0 0 X 0 1 1 X 1 0 X 0 0 01 D 11 C 10 B
5
POS minimization using k-maps
Using k-maps for POS minimization Encircle the zeros in the map Interpret indices complementary to SOP form AB CD A B D 00 01 11 10 C F = (B’+C+D)(B+C+D’)(A’+B’+C) Same idea as the Truth Table
6
Design example: a two-bit comparator
A B C D LT EQ GT A B C D AB < CD AB = CD AB > CD LT EQ GT block diagram truth table Need a 4 -variable Karnaugh map for each of the 3 output functions
7
Design example: a two-bit comparator (con’t)
K-map for LT K-map for EQ K-map for GT A A A AB AB AB 00 01 11 10 CD 00 01 11 10 CD 00 01 11 CD 10 00 00 00 01 01 01 D D D 11 11 11 C C C 10 10 10 B B B LT = A'B'D+A'C+B'CD GT = BC'D'+AC'+ABD' EQ = A'B'C'D'+A'BC'D+ABCD+AB'CD' = (A xnor C)•(B xnor D)
8
Design example: a two-bit comparator (con’t)
Two ways to implement EQ: Option 1: EQ = A'B'C'D'+A'BC'D+ABCD+AB'CD‘ 5 gates but they require lots of inputs Option 2 EQ = (A xnor C) •(B xnor D) XNOR is constructed from 3 simple gates 7 gates but they all have 2 inputs each A B C D EQ
9
Design example: a two-bit comparator (con’t)
Circuit schematics
10
Design example: BCD increment by 1
I8 I4 I2 I1 O8 O4 O2 O X X X X X X X X X X X X X X X X X X X X X X X X I1 I2 I4 I8 O1 O2 O4 O8 block diagram truth table Need a 4 -variable Karnaugh map for each of the 4 output functions
11
Design example: BCD increment by 1 (con’t)
0 1 X X 0 0 X X 0 1 X 0 1 0 X X 0 1 X X O8 = I4I2I1 + I8I1‘ O4 = I4I2' + I4I1' + I4'I2I1 O2 = I8'I2'I1 + I2I1‘ O1 = I1' I1 I8 I2 I4 I1 I8 I2 I4 O2 O1 0 0 X 0 1 1 X 0 0 0 X X 1 1 X X 1 1 X 1 0 0 X 0 0 0 X X 1 1 X X We greatly simplify the logic by using the don’t cares
12
Design example: BCD increment by 1 (con’t)
Draw the circuit schematic O8 = I4I2I1 + I8I1' O4 = I4I2' + I4I1' + I4'I2I1 O2 = I8'I2'I1 + I2I1' O1 = I1'
13
Design example: a two-bit multiplier
A2 A1 B2 B1 P8 P4 P2 P1 A1 A2 P1 P2 P4 P8 B1 B2 block diagram truth table Need a 4 -variable Karnaugh map for each of the 4 output functions 9
14
Two-bit multiplier (cont'd)
B1 A2A1 B2B1 A2 00 01 11 10 B2 A1 B1 A2A1 B2B1 A2 00 01 11 10 B2 A1 P4=A2B2B1' A2A1'B2 P8=A2A1B2B1 B1 A2A1 B2B1 A2 00 01 11 10 B2 A1 B1 A2A1 B2B1 A2 00 01 11 10 B2 A1 P1=A1B1 P2=A2'A1B A1B2B1' A2B2'B A2A1'B1
15
Lecture 10 Logistics Last lecture Today
HW3 due Friday (cover materials up to this lecture) Lab3 going on this week Midterm 1: a week from today --- material up to this lecture Last lecture Don’t cares POS minimization with K-map K-maps design examples Today "Switching-network" logic blocks (multiplexers/demultiplexers)
16
Switching-network logic blocks
Multiplexer (MUX) Routes one of many inputs to a single output Also called a selector Demultiplexer (DEMUX) Routes a single input to one of many outputs Also called a decoder multiplexer demultiplexer We construct these devices from: logic gates networks of tran- sistor switches control control
17
The “WHY” slide Multiplexers/Demultiplexers
If you had the ability to select which input to operate, the same part of a circuit can be used multiple times. So if you have a lot of inputs and all of them are supposed to go through same complex logic functions, you can save a lot of space on your circuit board by using a multiplexer. Then you will also need a demultiplexer to decode the output coming out in serial into separate output ports.
18
“WHY”: Sharing complex logic functions
Share an adder: Select inputs; route sum MUX A B Sum A0 A1 Ss Sb B0 B1 DEMUX Z Z1 multiple inputs Sa single adder multiple output destinations
19
Functional truth table
Multiplexers Basic concept 2n data inputs; n control inputs ("selects"); 1 output Connects one of 2n inputs to the output “Selects” decide which input connects to output Two alternative truth-tables: Functional and Logical Example: A 2:1 Mux Z = SIn1 + S'Ino Functional truth table Logical truth table In1 In0 S Z S Z 0 In0 1 In1 I0 Z S I1
20
Multiplexers (con't) 2:1 mux: Z = S'In0 + SIn1
4:1 mux: Z = S0'S1'In0 + S0'S1In1 + S0S1'In2 + S0S1In3 8:1 mux: Z = S0'S1'S2'In0 + S0'S1S2In I0 I1 2:1 mux I0 I1 I2 I3 I0 I1 I2 I3 I4 I5 I6 I7 Z 4:1 mux Z 8:1 mux S0 Z S0 S1 S0 S1 S2
21
Logic-gate implementation of multiplexers
2:1 mux 4:1 mux I0 I1 I2 I3 I0 S I1 Z Z Z S0 S1
22
Cascading multiplexers
Can form large multiplexers from smaller ones Many implementation options 8:1 mux 8:1 mux I0 I1 I2 I3 I0 I1 2:1 mux 4:1 mux I2 I3 2:1 mux 2:1 mux Z 4:1 mux I4 I5 I6 I7 Z 4:1 mux I4 I5 2:1 mux I6 I7 2:1 mux S0 S1 S2 S0 S1 S2
23
Multiplexers as general-purpose logic
A 2n:1 mux can implement any function of n variables A lookup table A 2n – 1:1 mux also can implement any function of n variables Example: F(A,B,C) = m0 + m2 + m6 + m = A'B'C' + A'BC' + ABC' + ABC = A'B'(C') + A'B(C') + AB(0) + AB(1) A B C F C' C' C' C' 0 1 F F 8:1 MUX 4:1 MUX S1 S0 S2 S1 S0 A B A B C
24
Multiplexers as general-purpose logic
Implementing a 2n-1:1 mux as a function of n variables (n-1) mux control variables S0 – Sn–1 One data variable Sn Four possible values for each data input: 0, 1, Sn, Sn' Example: F(A,B,C,D) implemented using an 8:1 mux A AB CD 00 01 11 10 1 D D' D D' D' Choose A,B,C as control variables Choose D as a data variable 00 8:1 MUX F 01 D 11 C 10 S2 S1 S0 B A B C
25
Demultiplexers (DEMUX)
Basic concept Single data input; n control inputs (“selects”); 2n outputs Single input connects to one of 2n outputs “Selects” decide which output is connected to the input When used as a decoder, the input is called an “enable” (G) 1:2 Decoder: Out0 = G S' Out1 = G S 2:4 Decoder: Out0 = G S1' S0' Out1 = G S1' S0 Out2 = G S1 S0' Out3 = G S1 S0 3:8 Decoder: Out0 = G S2' S1' S0' Out1 = G S2' S1' S0 Out2 = G S2' S1 S0' Out3 = G S2' S1 S0 Out4 = G S2 S1' S0' Out5 = G S2 S1' S0 Out6 = G S2 S1 S0' Out7 = G S2 S1 S0
26
Logic-gate implementation of demultiplexers
1:2 demux 2:4 demux S1 Out2 Out3 Out0 G Out1 S0 G Out0 S Out1
27
Demultiplexers as general-purpose logic
A n:2n demux can implement any function of n variables DEMUX as logic building block Use variables as select inputs Tie enable input to logic 1 Sum the appropriate minterms (extra OR gate) demultiplexer “decodes” appropriate minterms from the control signals 0 A'B'C' 1 A'B'C 2 A'BC' 3 A'BC 4 AB'C' 5 AB'C 6 ABC' 7 ABC 3:8 Demux 1 S2 S1 S0 A B C
28
Demultiplexers as general-purpose logic
Example F1 = A'BC'D + A'B'CD + ABCD F2 = ABC'D' + ABC F3 = (A'+B'+C'+D') 0 A'B'C'D' 1 A'B'C'D 2 A'B'CD' 3 A'B'CD 4 A'BC'D' 5 A'BC'D 6 A'BCD' 7 A'BCD 8 AB'C'D' 9 AB'C'D 10 AB'CD' 11 AB'CD 12 ABC'D' 13 ABC'D 14 ABCD' 15 ABCD F1 4:16 Demux Enable = 1 F2 F3 A B C D
29
Cascading demultiplexers
5:32 demux A'B'C'D'E' A'BC'DE' 3:8 Demux 3:8 Demux S2 S1 S0 S2 S1 S0 2:4 Demux F S1 S0 ABCDE AB'C'D'E' AB'CDE A B 3:8 Demux 3:8 Demux S2 S1 S0 S2 S1 S0 C D E C D E
30
Programmable logic (PLAs & PALs )
Concept: Large array of uncommitted AND/OR gates Actually NAND/NOR gates You program the array by making or breaking connections Programmable block for sum-of-products logic • • • inputs AND array OR array product terms outputs • • •
31
All two-level logic functions are available
You "program" the wire connections A 3-input, 5-term, 4-function PLA
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.