Presentation is loading. Please wait.

Presentation is loading. Please wait.

Proprioceptive Visual Tracking of a Humanoid Robot Head Motion

Similar presentations


Presentation on theme: "Proprioceptive Visual Tracking of a Humanoid Robot Head Motion"— Presentation transcript:

1 Proprioceptive Visual Tracking of a Humanoid Robot Head Motion
João Peixoto[1], Vitor Santos[1;2], and Filipe Silva[1;2] 1 Universidade de Aveiro, 2 Institute for Electronics Engineering and Informatics of Aveiro - IEETA

2 1 The Problem 2 3 4 5 Develop a balance algorithm based on the motion of the head; Measure the motion of the head; Improve measurements accuracy by merging different sources of data. 6 7

3 Experimental Setup 1 2 3 4 5 6 Inertial sensors; 7 Visual sensors;
Processing Unit. 6 7

4 Experimental Setup 1 2 3 4 5 6 7 RAZOR 9DOF - SEN 10736 Sensor A
Sensor B Processing Unit Fire-wire Camera 4 5 6 7 RAZOR 9DOF - SEN 10736

5 Experimental Setup 1 2 3 4 5 6 7 POLOLU - MinIMU9DOF v2 Sensor A
Sensor B Processing Unit Fire-wire Camera 4 5 6 7 POLOLU - MinIMU9DOF v2

6 Experimental Setup 1 2 3 4 5 6 7 Arduino UNO R3 Sensor A Sensor B
Processing Unit Fire-wire Camera 4 5 6 7 Arduino UNO R3

7 Firefly MV-03MTC - Pointgrey
1 Experimental Setup 2 3 Sensor A Sensor B Processing Unit Fire-wire Camera 4 5 6 7 Firefly MV-03MTC - Pointgrey

8 Experimental Setup 1 2 3 4 5 6 Experiment design problem: 7
Lack of accurate ground truth. 6 7

9 Experimental Setup 1 2 3 4 5 6 FANUC LR Mate 200iB 7
High repeatability; High end-effector position accuracy; Reliable ground truth; Easy experiment design.

10 1 2 3 4 5 6 7 Fanuc 200iB POLOLU - MinIMU9DOF v2
RAZOR 9DOF - SEN 10736 Arduino UNO R3 Fire-wire Camera

11 Obtaining Inertial Data
1 Obtaining Inertial Data 2 3 4 5 𝜃 𝑧 𝜃 𝑥 𝜃 𝑦 6 7

12 Obtaining Inertial Data
1 Obtaining Inertial Data 2 3 4 𝜃 𝑥 𝜃 𝑦 𝜃 𝑧 5 6 7 𝜃 𝑧 𝑘 𝜃 𝑥 𝑘 𝜃 𝑦 𝑘

13 Obtaining Visual Data 1 2 3 4 5 6 Blob Detection Method; 7
Feature Extraction Method. 6 7

14 1 Blob Detection 2 3 4 5 6 7

15 1 Blob Detection 2 3 4 𝜽 𝒚 =𝟎 ° 5 6 7

16 1 Blob Detection 2 3 4 𝜽 𝒚 =𝟓𝟓 ° 5 6 7

17 Blob Detection Advantages Disadvantages 1 2 3 4 5 6 7
Direct measure of angular position; Not dependent of previous measures. Disadvantages Lack of robustness

18 1 Feature Extraction 2 3 4 5 6 7

19 1 Feature Extraction 2 3 4 5 6 7

20 1 Feature Extraction 2 3 4 5 6 7 𝑇

21 Feature Extraction 1 2 3 4 5 𝜃 𝑇 𝑘 − 𝜃 𝑇 𝑘−1 =Δ 𝜃 𝑇 𝑘
𝜃 𝑇 𝑘 − 𝜃 𝑇 𝑘−1 =Δ 𝜃 𝑇 𝑘 𝑇 = 𝑐𝑜𝑠 𝜃 𝑇 −𝑠𝑖𝑛 𝜃 𝑇 𝑑 𝑧 𝑠𝑒𝑛 𝜃 𝑇 𝑐𝑜𝑠 𝜃 𝑇 𝑑 𝑥 6 7 𝜃 𝑦 𝑘 = Δ𝜃 𝑇 𝑘 + 𝜃 𝑦 𝑘−1 𝜃 𝑦 𝑘 = Δ 𝜃 𝑇 𝑘 Δ 𝑡 𝑘 + 𝜃 𝑦 𝑘−1

22 Feature Extraction Advantages Disadvantages 1 2 3 4 5 6 7
More robust method, which can operate in several environments; Can be used for various tasks, like mapping or scene recognition. Disadvantages Relies on previous measurements

23 1 Visual Tracking 2 3 4 5 6 7

24 1 Visual Tracking 2 3 4 5 6 7

25 1 Results 2 3 4 5 6 7

26 Kalman Filter 1 2 3 4 5 6 7 𝑥 𝑘 = 𝐴.𝑥 𝑘−1 +𝐵. 𝑢 𝑘−1 + 𝑤 𝑘
𝑦 𝑘 =𝐶. 𝑥 𝑘 + 𝑣 𝑘

27 Data Merging Using Kalman Filter
1 Data Merging Using Kalman Filter 2 3 4 5 6 𝑺𝒕𝒂𝒕𝒆 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔: 𝑥 𝑘 = 𝜃 𝑥 𝜃 𝑦 𝜃 𝑧 𝜃 𝑥 𝜃 𝑦 𝜃 𝑧 7 𝒙 𝒌 = 𝐴.𝑥 𝑘−1 +𝐵. 𝑢 𝑘−1 + 𝑤 𝑘 𝑦 𝑘 =𝐶. 𝑥 𝑘 + 𝑣 𝑘

28 Data Merging Using Kalman Filter
1 Data Merging Using Kalman Filter 2 3 4 5 𝑴𝒐𝒅𝒆𝒍 𝑫𝒆𝒇𝒊𝒏𝒊𝒕𝒊𝒐𝒏: 𝜃 𝑘 = 𝜃 𝑘−1 + 𝜃 𝑘−1 . ∆ 𝑡 +0,5. 𝜃 k−1 . ∆t 2 𝜃 𝑘 = 𝜃 𝑘−1 + 𝜃 k−1 .∆𝑡 𝜃 𝑘−1 = 𝑢 𝑘 = 𝟎 ( 𝜃 𝑘−1 − 𝜃 𝑘−2 ) ∆ 𝑡 𝑘 6 7 𝑥 𝑘 = 𝑨.𝑥 𝑘−1 +𝑩. 𝑢 𝑘−1 + 𝑤 𝑘 𝑦 𝑘 =𝐶. 𝑥 𝑘 + 𝑣 𝑘

29 Data Merging Using Kalman Filter
1 Data Merging Using Kalman Filter 2 3 4 5 𝑴𝒐𝒅𝒆𝒍 𝑫𝒆𝒇𝒊𝒏𝒊𝒕𝒊𝒐𝒏: 𝜃 𝑘 = 𝜃 𝑘−1 + 𝜃 𝑘−1 . ∆ 𝑡 +0,5. 𝜃 k−1 . ∆t 2 𝜃 𝑘 = 𝜃 𝑘−1 + 𝜃 k−1 .∆𝑡 6 7 𝑥 𝑘 = 𝑨.𝑥 𝑘−1 +𝑩. 𝑢 𝑘−1 + 𝑤 𝑘 𝑦 𝑘 =𝐶. 𝑥 𝑘 + 𝑣 𝑘 𝐴= Δ 𝑡 Δ 𝑡 Δ 𝑡 𝐵= 0,5 ∆t 2 0,5 ∆t 2 0,5 ∆t 2

30 Data Merging Using Kalman Filter
1 Data Merging Using Kalman Filter 2 3 4 5 6 𝜃 𝑥 𝑖 𝜃 𝑦 𝑖 𝜃 𝑧 𝑖 𝜃 𝑥 𝑖 𝜃 𝑦 𝑖 𝜃 𝑧 𝑖 = Δ 𝑡 Δ 𝑡 Δ 𝑡 𝜃 𝑥 𝑖−1 𝜃 𝑦 𝑖−1 𝜃 𝑧 𝑖−1 𝜃 𝑥 𝑖−1 𝜃 𝑦 𝑖−1 𝜃 𝑧 𝑖−1 7 + 0,5 ∆t 2 0,5 ∆t 2 0,5 ∆t 𝜃 𝑥 𝑖−1 𝜃 𝑦 𝑖−1 𝜃 𝑧 𝑖−1 𝒙 𝒌 = 𝑨.𝒙 𝒌−𝟏 +𝑩. 𝒖 𝒌−𝟏 + 𝒘 𝒌 𝑦 𝑘 =𝐶. 𝑥 𝑘 + 𝑣 𝑘

31 Data Merging Using Kalman Filter
1 Data Merging Using Kalman Filter 2 3 4 𝜃 𝑧 𝑘 𝜃 𝑥 𝑘 𝜃 𝑦 𝑘 5 6 𝑦 𝑘 = … 7 𝑥 𝑘 = 𝐴.𝑥 𝑘−1 +𝐵. 𝑢 𝑘−1 + 𝑤 𝑘 𝒚 𝒌 =𝐶. 𝑥 𝑘 + 𝑣 𝑘

32 Data Merging Using Kalman Filter
1 Data Merging Using Kalman Filter 2 3 4 𝜃 𝑧 𝑘 𝜃 𝑥 𝑘 𝜃 𝑦 𝑘 5 𝑦 𝑘 = 𝜃 𝑥 𝜃 𝑦 𝜃 𝑧 6 7 𝑥 𝑘 = 𝐴.𝑥 𝑘−1 +𝐵. 𝑢 𝑘−1 + 𝑤 𝑘 𝒚 𝒌 =𝐶. 𝑥 𝑘 + 𝑣 𝑘

33 Data Merging Using Kalman Filter
1 Data Merging Using Kalman Filter 2 3 4 5 𝑦 𝑘 = 𝜃 𝑥 𝜃 𝑦 𝜃 𝑧 𝜃 𝑥 𝜃 𝑦 𝜃 𝑧 … 6 7 𝑥 𝑘 = 𝐴.𝑥 𝑘−1 +𝐵. 𝑢 𝑘−1 + 𝑤 𝑘 𝒚 𝒌 =𝐶. 𝑥 𝑘 + 𝑣 𝑘

34 Data Merging Using Kalman Filter
1 Data Merging Using Kalman Filter 2 3 4 5 𝑦 𝑘 = 𝜃 𝑥 𝜃 𝑦 𝜃 𝑧 𝜃 𝑥 𝜃 𝑦 𝜃 𝑧 𝜃 𝐶 𝑦 𝜃 𝐶 𝑦 … 6 7 𝑥 𝑘 = 𝐴.𝑥 𝑘−1 +𝐵. 𝑢 𝑘−1 + 𝑤 𝑘 𝒚 𝒌 =𝐶. 𝑥 𝑘 + 𝑣 𝑘

35 Data Merging Using Kalman Filter
1 Data Merging Using Kalman Filter 2 3 4 𝑦 𝑘 = 𝜃 𝑥 𝜃 𝑦 𝜃 𝑧 𝜃 𝑥 𝜃 𝑦 𝜃 𝑧 𝜃 𝐶 𝑦 𝜃 𝐶 𝑦 … 5 𝐶= … 6 𝑥 𝑘 = 𝜃 𝑥 𝜃 𝑦 𝜃 𝑧 𝜃 𝑥 𝜃 𝑦 𝜃 𝑧 7 𝑥 𝑘 = 𝐴.𝑥 𝑘−1 +𝐵. 𝑢 𝑘−1 + 𝑤 𝑘 𝑦 𝑘 =𝑪. 𝑥 𝑘 + 𝑣 𝑘

36 Data Merging Using Kalman Filter
1 Data Merging Using Kalman Filter 2 3 4 5 I V MD Kalman Filter 6 *1 7 *1 𝐺 𝑘 = ……………… ……………… ……………… ……………… ……………… ………………

37 1 Results 2 3 4 5 6 7

38 1 Results 2 3 4 5 6 7

39 Results 𝑢 𝑘 = ( 𝜃 𝑘−1 − 𝜃 𝑘−2 ) ∆ 𝑡 𝑘 1 2 3 4 5 6 Kalman Filter
Inertial Data Visual Data Merged Data Ground Truth No Treatment Kalman Filter 𝑢 𝑘 =0 𝑢 𝑘 = ( 𝜃 𝑘−1 − 𝜃 𝑘−2 ) ∆ 𝑡 𝑘 6 7

40 Experiment 1

41 Experiment 1 (Error)

42 Experiment 2

43 Experiment 2 (Error)

44 Conclusions FANUC 200iB provides accurate and reliable ground truth;
Merging inertial and visual data will wield better results than the original data by itself; Kalman Filter is robust to noise; Worst cases will have better improvement; Extensible tool/approach.


Download ppt "Proprioceptive Visual Tracking of a Humanoid Robot Head Motion"

Similar presentations


Ads by Google