Presentation is loading. Please wait.

Presentation is loading. Please wait.

Circle Centre (a, b) radius r

Similar presentations


Presentation on theme: "Circle Centre (a, b) radius r"β€” Presentation transcript:

1 Circle Centre (a, b) radius r
Sunday, 02 December 2018

2 Equation of a circle through (a, b) with radius r

3 Example Find the equation the circle with centre (–2, 4) and radius 4.
π‘₯+2 2 + π‘¦βˆ’4 2 =16

4 Example Find the equation of the circle centre (–2, 4) which touches the y axis.
π‘₯+2 2 + π‘¦βˆ’4 2 =4 βˆ’2,4 2

5 Example Show that the equation π‘₯ 2 + 𝑦 2 βˆ’2π‘₯+4π‘¦βˆ’4=0 represents a circle and find its centre and radius. π‘₯ 2 + 𝑦 2 βˆ’2π‘₯+4π‘¦βˆ’4=0 π‘₯ 2 βˆ’2π‘₯ + 𝑦 2 +4𝑦 =4 π‘₯ 2 βˆ’2π‘₯ 𝑦 2 +4𝑦 =4+1+4 π‘₯βˆ’1 2 + 𝑦+2 2 =9 ∴ Circle centre 1,βˆ’2 and radius 3

6 Example Show that the equation π‘₯ 2 + 𝑦 2 βˆ’16π‘₯+10𝑦+85=0 represents a circle. π‘₯ 2 + 𝑦 2 βˆ’16π‘₯+10𝑦+85=0 π‘₯ 2 βˆ’16π‘₯ + 𝑦 2 +10𝑦 =βˆ’85 π‘₯ 2 βˆ’16π‘₯ 𝑦 2 +10𝑦 =βˆ’ π‘₯βˆ’8 2 + 𝑦+5 2 =4 ∴ Circle centre 8,βˆ’5 and radius 2

7 Example Find the points of intersection of the circle π‘₯ 2 + 𝑦 2 =20 with the line 𝑦=3π‘₯βˆ’2
Solve simultaneous equations π‘₯ 2 + 𝑦 2 =20 π‘₯ π‘₯βˆ’2 2 =20 π‘₯ 2 + 9π‘₯ 2 βˆ’12π‘₯+4=20 10π‘₯ 2 βˆ’12π‘₯βˆ’16=0 5π‘₯ 2 βˆ’6π‘₯βˆ’8=0 5π‘₯+4 π‘₯βˆ’2 =0 π‘₯=βˆ’ 4 5 π‘₯=2 𝑦=4 𝑦=βˆ’ 22 5 ∴ points of intersection are 2,4 and βˆ’0.8,βˆ’4.4

8 Example Work out the equation of the tangent that can be drawn to the circle with equation π‘₯ 2 + 𝑦 2 +2π‘₯βˆ’6π‘¦βˆ’3=0 from the point 2,1 π‘₯ 2 + 𝑦 2 +2π‘₯βˆ’6π‘¦βˆ’3=0 π‘₯ 2 +2π‘₯ + 𝑦 2 βˆ’6𝑦 =3 π‘₯ 2 +2π‘₯ 𝑦 2 βˆ’6𝑦 =3+1+9 π‘₯+1 2 + π‘¦βˆ’3 2 =13 ∴ Circle centre βˆ’1,3 and radius 13

9 1βˆ’βˆ’3 2βˆ’1 = 4 1 Gradient of radius = βˆ’ 1 4 Gradient of tangent =
2,1 1,βˆ’3 Equation of tangent βˆ’ 1 4 π‘¦βˆ’ = π‘₯βˆ’ 2 1 4π‘¦βˆ’8 =βˆ’1 π‘₯βˆ’1 4π‘¦βˆ’8 =βˆ’π‘₯+1 4𝑦+π‘₯ =9

10 Questions 1. Find the centre and radius for the following circles (a) π‘₯ 2 + 𝑦 2 +2π‘₯βˆ’8𝑦+13=0 (b) π‘₯ 2 + 𝑦 2 βˆ’2π‘₯βˆ’2π‘¦βˆ’2=0

11 2. Find the equations for each of the following circles
(a) centre 3,4 with radius 1 (b) centre βˆ’2,2 with radius 5

12 (c) centre 3,βˆ’2 with circle touching the x-axis
(d) Centre (1, 2) passing through the point (βˆ’1,5)

13 3. Find the equation of the tangent to the circle
π‘₯ 2 + 𝑦 2 +6π‘₯+3π‘¦βˆ’4=0 at the point (βˆ’1,βˆ’2)

14 4. Find the points of intersection of the circle π‘₯ 2 + 𝑦 2 βˆ’4π‘₯βˆ’1=0 and the line 𝑦=π‘₯βˆ’5


Download ppt "Circle Centre (a, b) radius r"

Similar presentations


Ads by Google