Download presentation
Presentation is loading. Please wait.
Published byYulia Tanudjaja Modified over 6 years ago
1
Options Introduction Call and put option contracts Notation
Definitions Graphical representations (payoff diagrams) Finance 30233, Fall 2010 Advanced Investments S. Mann The Neeley School at TCU S.Mann, 2010
2
Options Right, but not the obligation, to either buy or sell at a fixed price over a time period (t,T) Call option - right to buy at fixed price Put option - right to sell at fixed price fixed price (K) : strike price, exercise price (K = X in BKM) selling an option: write the option Notation: call value (stock price, time remaining, strike price) = c ( S(t) , T-t, K) at expiration (T): c (S(T),0,K) = if S(T) < K S(T) - K if S(T) K or: c(S(T),0,K) = max (0,S(T) - K) S.Mann, 2010
3
"Moneyness" Call “moneyness” Call value K asset price (S) Put
K asset price (S) Out of the money in the money (S < K) (S > K) Put “moneyness” Put value K asset price (S) in the money out of the money (S < K) (S >K) S.Mann, 2010
4
Call value at maturity c (S(T),0,K) = 0 ; S(T) < K
5 Call value = max (0, S(T) - K) K (K+5) S(T) S.Mann, 2010
5
Short position in Call: value at maturity
c (S(T),0,K) = ; S(T) < K S(T) - K ; S(T) K short is opposite: -c(S(T),0,K) = ; S(T) < K [S(T)-K] ; S(T) K Value -5 Short call value = min (0, K -S(T)) K (K+5) S(T) S.Mann, 2010
6
Call profit at maturity
Call value at T: c(S(T),0,K) = max(0,S(T)-K) Value Call profit Profit = c(S(T),0,K) - c(S(t),T-t,K) Breakeven point K S(T) Profit is value at maturity less initial price paid. S.Mann, 2010
7
S.Mann, 2010
8
Put value at maturity p(S(T),0,K) = K - S(T) ; S(T) K
5 Put value = max (0, K - S(T)) (K-5) K S(T) S.Mann, 2010
9
Short put position: value at maturity
p(S(T),0,K) = K - S(T) ; S(T) K 0 ; S(T) > K short is opposite: -p(S(T),0,K) = S(T) - K ; S(T) K Value -5 Short put value = min (0, S(T)-K) (K-5) K S(T) S.Mann, 2010
10
Put profit at maturity Put value at T: p(S(T),0,K) = max(0,K-S(T)) put
Put value at T: p(S(T),0,K) = max(0,K-S(T)) put profit Profit = p(S(T),0,K) - p(S(t),T-t,K) Breakeven point K S(T) Profit is value at maturity less initial price paid. S.Mann, 2010
11
Option values at maturity (payoffs)
long put long call K K short call short put K K S.Mann, 2010
12
European Put-Call parity: Asset plus Put Asset plus European put:
K K K K S(T) Put Asset plus European put: S(0) + p[S(0),T;K] K S.Mann, 2010
13
European Put-Call parity: Bond plus Call
K K K K S(T) Call Bond + European Call: c[S(0),T;K] + KB(0,T) K S.Mann, 2010
14
European Put-Call parity: S(0) + p[S(0),T;K] = c[S(0),T;K] + KB(0,T)
Value at expiration Position cost now S(T) K S(T) > K Portfolio A: Stock S(0) S(T) S(T) put p[S(0),T;K] K - S(T) 0 total A: S + P K S (T) Portfolio B: Call c[S(0),T;K] 0 S(T) - K Bill KB(0,T) K K total B: C + KB(0,T) K S(T) European Put-Call parity: S(0) + p[S(0),T;K] = c[S(0),T;K] + KB(0,T) S.Mann, 2010
15
Bull Spread: value at maturity
S(0) = $ value at maturity position: S(T) S(T) S(T) > 50 Long call with strike at $45 0 S(T) S(T) -45 Short call w/ strike at $ [ S(T) - 50] net: 0 S(T) 10 5 Position value at T S(T) S.Mann, 2010
16
Bear Spread: value at maturity
S(0) = $ value at maturity position: S(T) S(T) S(T) >35 Long call with strike at $ S(T) -35 Short call w/ strike at $ [S(T) - 25] - [ S(T) -25] net: S(T) - 5 -10 Position value at T S(T) S.Mann, 2010
17
Butterfly Spread: value at maturity
S(0) = $50 value at maturity position: S(T) S(T S(T) S(T) > 55 Long call , K= $ S(T) S(T) S(T) - 45 Short 2 calls, K= $ [S(T) - 50] -2[S(T) - 50] Long call , K = $ S(T) - 55 net: S(T) S(T) 10 5 Position value at T S(T) S.Mann, 2010
18
Straddle value at maturity
S(0) = $ value at maturity position: S(T) S(T) > 25 Long call, K= $ S(T) - 45 Long put , K= $ S(T) net: S(T) S(T) - 25 10 5 straddle Position value at T Bottom straddle S(T) Bottom straddle: call strike > put strike: put K = 23; call K = 27 S.Mann, 2010
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.