Download presentation
Presentation is loading. Please wait.
1
Conflict-Aware Event-Participant Arrangement
Jieying She, Yongxin Tong, Lei Chen, Caleb Chen Cao The Hong Kong University of Science and Technology
2
Outline 1. Introduction 2. Problem Definition 3. Algorithms
4. Experiments 5. Conclusion
3
Introduction: Event-Based Social Network (EBSN)
A snapshot of Meetup.com
5
Tabletop Game Word Game Sports Gathering Tabletop Game Gathering Tabletop Game Word Game Business Gathering Volleyball Word Game
6
Can we satisfy the following real-world constraints?
Can we find an arrangement among the events and users to satisfy most partiesβ interests? Can we satisfy the following real-world constraints? Capacity of events and users Conflicts of events
7
Problem Definition Global Event-participant Arrangement with Conflict and Capacity (GEACC) Given A set of events π Each π£βπ with maximum attendee capacity π π£ and hidden attribute vector π π£ A set of users π Each π’βπ with capacity π π’ and hidden attribute vector π π’ A set of conflicting event pairs πΆπΉ π£ π , π£ π βπΆπΉ: a user can attend at most one of π£ π and π£ π A similarity function π ππ( π π£ , π π’ ) Find an arrangement π={π(π£,π’)} (π π£,π’ =0 or 1)among events and users Maximize πππ₯ππ’π π = π£,π’ π π£,π’ π ππ( π π£ , π π’ ) Capacities of events and users are not exceeded β assigned pair π£,π’: π ππ π π£ , π π’ >0 No conflicting events are assigned to the same user NP-hard
8
Algorithms: (1)MinCostFlow-GEACC
Basic idea 1. Construct a flow network 2. Min-cost flow ο a temporary arrangement 3. Resolve conflicts
9
Algorithms: (1)MinCostFlow-GEACC
Basic idea 1. Construct a flow network u 1 (3) u 2 (1) u 3 (1) u 4 (2) u 5 (3) Conflicts π£ 1 (5) 0.93 0.43 0.84 0.64 0.65 π£ 3 π£ 2 (3) 0.35 0.19 0.21 0.4 NA π£ 3 (2) 0.86 0.57 0.78 0.79 0.68 π£ 1 cost=0.07 cap.=1 π’ 1 cost=0 cap.=5 π£ 1 π’ 2 π π£ 2 π’ 3 π‘ cost=0 cap.=2 π’ 4 π£ 3 cost=0 cap.=3 cost=0.32 cap.=1 π’ 5
10
Algorithms: (1)MinCostFlow-GEACC
Basic idea 2. Min-cost flow ο a temporary arrangement Send each flow Ξβ{ Ξ πππ , Ξ πππ +1,β―, Ξ πππ₯ } Ξ πππ = min { π ,|π|} , Ξ πππ₯ = min { π£ π π£ , π’ π π’ } u 1 (3) u 2 (1) u 3 (1) u 4 (2) u 5 (3) Conflicts π£ 1 (5) 0.93 0.43 0.84 0.64 0.65 π£ 3 π£ 2 (3) 0.35 0.19 0.21 0.4 NA π£ 3 (2) 0.86 0.57 0.78 0.79 0.68 π£ 1 Ξ=10 π’ 1 π’ 1 flow=3 π£ 1 flow=5 π£ 1 ππππ€ π£,π’ =1 π ππ π π£ , π π’ >0 π’ 2 π’ 2 flow=3 π£ 2 π’ 3 π π£ 2 π’ 3 π‘ flow=2 π’ 4 flow=2 π’ 4 π£ 3 π£ 3 flow=3 π’ 5 π’ 5
11
Algorithms: (1)MinCostFlow-GEACC
Approximation ratio: π π¦ππ± π π Basic idea 3. Resolve conflicts u 1 (3) u 2 (1) u 3 (1) u 4 (2) u 5 (3) Conflicts π£ 1 (5) 0.93 0.43 0.84 0.64 0.65 π£ 3 π£ 2 (3) 0.35 0.19 0.21 0.4 NA π£ 3 (2) 0.86 0.57 0.78 0.79 0.68 π£ 1 π’ 1 π£ 1 π’ 2 πππ₯ππ’π=4.13 π£ 2 π’ 3 π’ 4 π£ 3 π’ 5
12
Algorithms: (2)Greedy-GEACC
Basic idea Greedily add the most similar unmatched pair u 1 (3) u 2 (1) u 3 (1) u 4 (2) u 5 (3) Conflicts π£ 1 (5) 0.93 0.43 0.84 0.64 0.65 π£ 3 π£ 2 (3) 0.35 0.19 0.21 0.4 NA π£ 3 (2) 0.86 0.57 0.78 0.79 0.68 π£ 1 π’ 1 π£ 1 π’ 2 H = {{ π£ 1 , π’ 1 }:0.93, { π£ 3 , π’ 1 }:0.86, { π£ 1 , π’ 3 }:0.84, { π£ 3 , π’ 4 }:0.79, { π£ 3 , π’ 5 }:0.68, { π£ 3 , π’ 2 }:0.57, { π£ 2 , π’ 5 }:0.4} π£ 2 π’ 3 π’ 4 π£ 3 π’ 5
13
Algorithms: (2)Greedy-GEACC
Basic idea Greedily add the most similar unmatched pair u 1 (3) u 2 (1) u 3 (1) u 4 (2) u 5 (3) Conflicts π£ 1 (5) 0.93 0.43 0.84 0.64 0.65 π£ 3 π£ 2 (3) 0.35 0.19 0.21 0.4 NA π£ 3 (2) 0.86 0.57 0.78 0.79 0.68 π£ 1 π’ 1 π£ 1 π’ 2 H = {{ π£ 1 , π’ 1 }:0.93, { π£ 3 , π’ 1 }:0.86, { π£ 1 , π’ 3 }:0.84, { π£ 3 , π’ 4 }:0.79, { π£ 3 , π’ 5 }:0.68, { π£ 3 , π’ 2 }:0.57, { π£ 2 , π’ 5 }:0.4} π£ 2 π’ 3 π’ 4 π£ 3 π’ 5
14
Algorithms: (2)Greedy-GEACC
Basic idea Greedily add the most similar unmatched pair u 1 (3) u 2 (1) u 3 (1) u 4 (2) u 5 (3) Conflicts π£ 1 (5) 0.93 0.43 0.84 0.64 0.65 π£ 3 π£ 2 (3) 0.35 0.19 0.21 0.4 NA π£ 3 (2) 0.86 0.57 0.78 0.79 0.68 π£ 1 π’ 1 π£ 1 π’ 2 H = {{ π£ 3 , π’ 1 }:0.86, { π£ 1 , π’ 3 }:0.84, { π£ 3 , π’ 4 }:0.79, { π£ 3 , π’ 5 }:0.68, { π£ 3 , π’ 2 }:0.57, { π£ 2 , π’ 5 }:0.4} π£ 2 π’ 3 π’ 4 π£ 3 π’ 5
15
Algorithms: (2)Greedy-GEACC
Basic idea Greedily add the most similar unmatched pair u 1 (3) u 2 (1) u 3 (1) u 4 (2) u 5 (3) Conflicts π£ 1 (5) 0.93 0.43 0.84 0.64 0.65 π£ 3 π£ 2 (3) 0.35 0.19 0.21 0.4 NA π£ 3 (2) 0.86 0.57 0.78 0.79 0.68 π£ 1 π’ 1 π£ 1 π’ 2 H = {{ π£ 1 , π’ 3 }:0.84, { π£ 3 , π’ 4 }:0.79, { π£ 3 , π’ 5 }:0.68, { π£ 3 , π’ 2 }:0.57, { π£ 2 , π’ 5 }:0.4} H = {{ π£ 1 , π’ 3 }:0.84, { π£ 3 , π’ 4 }:0.79, { π£ 3 , π’ 5 }:0.68, { π π , π π }:0.65, { π£ 3 , π’ 2 }:0.57, { π£ 2 , π’ 5 }:0.4} π£ 2 π’ 3 π’ 4 π£ 3 π’ 5
16
Algorithms: (2)Greedy-GEACC
Approximation ratio: π π+π¦ππ± π π Basic idea Greedily add the most similar unmatched pair u 1 (3) u 2 (1) u 3 (1) u 4 (2) u 5 (3) Conflicts π£ 1 (5) 0.93 0.43 0.84 0.64 0.65 π£ 3 π£ 2 (3) 0.35 0.19 0.21 0.4 NA π£ 3 (2) 0.86 0.57 0.78 0.79 0.68 π£ 1 π’ 1 π£ 1 π’ 2 H = ({ π£ 2 , π’ 3 }) π£ 2 π’ 3 πππ₯ππ’π=4.28 π’ 4 π£ 3 π’ 5
17
Algorithms: (3)Prune-GEACC
An exact algorithm for small dataset Search the space in increasing order of π ππ( π π£ , π π’ ) values and calculate an upper bound to do the pruning
18
Experiments Two baselines
Random-V: iterate over each π£βπ, during which add each pair {π£,π’} with probability π π£ |π| if it satisfies all the constraints Random-U: iterate over each π’βπ, during which add each pair {π£,π’} with probability π π’ |π| if it satisfies all the constraints Test on both synthetic data and real Meetup data
19
Experiments: Vary |π| Default: π =1000, 25% events are conflicting
20
Experiments: Vary πΆπΉ /(|π|( π β1)/2)
Default: V =100, π =1000
21
Experiments: Real Data
Auckland: π =37, π =569
22
Experiments: Scalability
23
Experiments: Pruning π =5, π =15
24
Conclusion Identify a novel event-participant arrangement problem (GEACC), which is NP-hard Design two approximate solutions and an exact solution Extensive experiments on both real and synthetic datasets
25
Thank you
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.