Presentation is loading. Please wait.

Presentation is loading. Please wait.

Conflict-Aware Event-Participant Arrangement

Similar presentations


Presentation on theme: "Conflict-Aware Event-Participant Arrangement"β€” Presentation transcript:

1 Conflict-Aware Event-Participant Arrangement
Jieying She, Yongxin Tong, Lei Chen, Caleb Chen Cao The Hong Kong University of Science and Technology

2 Outline 1. Introduction 2. Problem Definition 3. Algorithms
4. Experiments 5. Conclusion

3 Introduction: Event-Based Social Network (EBSN)
A snapshot of Meetup.com

4

5 Tabletop Game Word Game Sports Gathering Tabletop Game Gathering Tabletop Game Word Game Business Gathering Volleyball Word Game

6 Can we satisfy the following real-world constraints?
Can we find an arrangement among the events and users to satisfy most parties’ interests? Can we satisfy the following real-world constraints? Capacity of events and users Conflicts of events

7 Problem Definition Global Event-participant Arrangement with Conflict and Capacity (GEACC) Given A set of events 𝑉 Each π‘£βˆˆπ‘‰ with maximum attendee capacity 𝑐 𝑣 and hidden attribute vector 𝒍 𝑣 A set of users π‘ˆ Each π‘’βˆˆπ‘ˆ with capacity 𝑐 𝑒 and hidden attribute vector 𝒍 𝑒 A set of conflicting event pairs 𝐢𝐹 𝑣 𝑖 , 𝑣 𝑗 ∈𝐢𝐹: a user can attend at most one of 𝑣 𝑖 and 𝑣 𝑗 A similarity function π‘ π‘–π‘š( 𝒍 𝑣 , 𝒍 𝑒 ) Find an arrangement 𝑀={π‘š(𝑣,𝑒)} (π‘š 𝑣,𝑒 =0 or 1)among events and users Maximize π‘€π‘Žπ‘₯π‘†π‘’π‘š 𝑀 = 𝑣,𝑒 π‘š 𝑣,𝑒 π‘ π‘–π‘š( 𝒍 𝑣 , 𝒍 𝑒 ) Capacities of events and users are not exceeded βˆ€ assigned pair 𝑣,𝑒: π‘ π‘–π‘š 𝒍 𝑣 , 𝒍 𝑒 >0 No conflicting events are assigned to the same user NP-hard

8 Algorithms: (1)MinCostFlow-GEACC
Basic idea 1. Construct a flow network 2. Min-cost flow οƒ a temporary arrangement 3. Resolve conflicts

9 Algorithms: (1)MinCostFlow-GEACC
Basic idea 1. Construct a flow network u 1 (3) u 2 (1) u 3 (1) u 4 (2) u 5 (3) Conflicts 𝑣 1 (5) 0.93 0.43 0.84 0.64 0.65 𝑣 3 𝑣 2 (3) 0.35 0.19 0.21 0.4 NA 𝑣 3 (2) 0.86 0.57 0.78 0.79 0.68 𝑣 1 cost=0.07 cap.=1 𝑒 1 cost=0 cap.=5 𝑣 1 𝑒 2 𝑠 𝑣 2 𝑒 3 𝑑 cost=0 cap.=2 𝑒 4 𝑣 3 cost=0 cap.=3 cost=0.32 cap.=1 𝑒 5

10 Algorithms: (1)MinCostFlow-GEACC
Basic idea 2. Min-cost flow οƒ a temporary arrangement Send each flow Ξ”βˆˆ{ Ξ” π‘šπ‘–π‘› , Ξ” π‘šπ‘–π‘› +1,β‹―, Ξ” π‘šπ‘Žπ‘₯ } Ξ” π‘šπ‘–π‘› = min { 𝑉 ,|π‘ˆ|} , Ξ” π‘šπ‘Žπ‘₯ = min { 𝑣 𝑐 𝑣 , 𝑒 𝑐 𝑒 } u 1 (3) u 2 (1) u 3 (1) u 4 (2) u 5 (3) Conflicts 𝑣 1 (5) 0.93 0.43 0.84 0.64 0.65 𝑣 3 𝑣 2 (3) 0.35 0.19 0.21 0.4 NA 𝑣 3 (2) 0.86 0.57 0.78 0.79 0.68 𝑣 1 Ξ”=10 𝑒 1 𝑒 1 flow=3 𝑣 1 flow=5 𝑣 1 π‘“π‘™π‘œπ‘€ 𝑣,𝑒 =1 π‘ π‘–π‘š 𝒍 𝑣 , 𝒍 𝑒 >0 𝑒 2 𝑒 2 flow=3 𝑣 2 𝑒 3 𝑠 𝑣 2 𝑒 3 𝑑 flow=2 𝑒 4 flow=2 𝑒 4 𝑣 3 𝑣 3 flow=3 𝑒 5 𝑒 5

11 Algorithms: (1)MinCostFlow-GEACC
Approximation ratio: 𝟏 𝐦𝐚𝐱 𝒄 𝒖 Basic idea 3. Resolve conflicts u 1 (3) u 2 (1) u 3 (1) u 4 (2) u 5 (3) Conflicts 𝑣 1 (5) 0.93 0.43 0.84 0.64 0.65 𝑣 3 𝑣 2 (3) 0.35 0.19 0.21 0.4 NA 𝑣 3 (2) 0.86 0.57 0.78 0.79 0.68 𝑣 1 𝑒 1 𝑣 1 𝑒 2 π‘€π‘Žπ‘₯π‘†π‘’π‘š=4.13 𝑣 2 𝑒 3 𝑒 4 𝑣 3 𝑒 5

12 Algorithms: (2)Greedy-GEACC
Basic idea Greedily add the most similar unmatched pair u 1 (3) u 2 (1) u 3 (1) u 4 (2) u 5 (3) Conflicts 𝑣 1 (5) 0.93 0.43 0.84 0.64 0.65 𝑣 3 𝑣 2 (3) 0.35 0.19 0.21 0.4 NA 𝑣 3 (2) 0.86 0.57 0.78 0.79 0.68 𝑣 1 𝑒 1 𝑣 1 𝑒 2 H = {{ 𝑣 1 , 𝑒 1 }:0.93, { 𝑣 3 , 𝑒 1 }:0.86, { 𝑣 1 , 𝑒 3 }:0.84, { 𝑣 3 , 𝑒 4 }:0.79, { 𝑣 3 , 𝑒 5 }:0.68, { 𝑣 3 , 𝑒 2 }:0.57, { 𝑣 2 , 𝑒 5 }:0.4} 𝑣 2 𝑒 3 𝑒 4 𝑣 3 𝑒 5

13 Algorithms: (2)Greedy-GEACC
Basic idea Greedily add the most similar unmatched pair u 1 (3) u 2 (1) u 3 (1) u 4 (2) u 5 (3) Conflicts 𝑣 1 (5) 0.93 0.43 0.84 0.64 0.65 𝑣 3 𝑣 2 (3) 0.35 0.19 0.21 0.4 NA 𝑣 3 (2) 0.86 0.57 0.78 0.79 0.68 𝑣 1 𝑒 1 𝑣 1 𝑒 2 H = {{ 𝑣 1 , 𝑒 1 }:0.93, { 𝑣 3 , 𝑒 1 }:0.86, { 𝑣 1 , 𝑒 3 }:0.84, { 𝑣 3 , 𝑒 4 }:0.79, { 𝑣 3 , 𝑒 5 }:0.68, { 𝑣 3 , 𝑒 2 }:0.57, { 𝑣 2 , 𝑒 5 }:0.4} 𝑣 2 𝑒 3 𝑒 4 𝑣 3 𝑒 5

14 Algorithms: (2)Greedy-GEACC
Basic idea Greedily add the most similar unmatched pair u 1 (3) u 2 (1) u 3 (1) u 4 (2) u 5 (3) Conflicts 𝑣 1 (5) 0.93 0.43 0.84 0.64 0.65 𝑣 3 𝑣 2 (3) 0.35 0.19 0.21 0.4 NA 𝑣 3 (2) 0.86 0.57 0.78 0.79 0.68 𝑣 1 𝑒 1 𝑣 1 𝑒 2 H = {{ 𝑣 3 , 𝑒 1 }:0.86, { 𝑣 1 , 𝑒 3 }:0.84, { 𝑣 3 , 𝑒 4 }:0.79, { 𝑣 3 , 𝑒 5 }:0.68, { 𝑣 3 , 𝑒 2 }:0.57, { 𝑣 2 , 𝑒 5 }:0.4} 𝑣 2 𝑒 3 𝑒 4 𝑣 3 𝑒 5

15 Algorithms: (2)Greedy-GEACC
Basic idea Greedily add the most similar unmatched pair u 1 (3) u 2 (1) u 3 (1) u 4 (2) u 5 (3) Conflicts 𝑣 1 (5) 0.93 0.43 0.84 0.64 0.65 𝑣 3 𝑣 2 (3) 0.35 0.19 0.21 0.4 NA 𝑣 3 (2) 0.86 0.57 0.78 0.79 0.68 𝑣 1 𝑒 1 𝑣 1 𝑒 2 H = {{ 𝑣 1 , 𝑒 3 }:0.84, { 𝑣 3 , 𝑒 4 }:0.79, { 𝑣 3 , 𝑒 5 }:0.68, { 𝑣 3 , 𝑒 2 }:0.57, { 𝑣 2 , 𝑒 5 }:0.4} H = {{ 𝑣 1 , 𝑒 3 }:0.84, { 𝑣 3 , 𝑒 4 }:0.79, { 𝑣 3 , 𝑒 5 }:0.68, { 𝒗 𝟏 , 𝒖 πŸ“ }:0.65, { 𝑣 3 , 𝑒 2 }:0.57, { 𝑣 2 , 𝑒 5 }:0.4} 𝑣 2 𝑒 3 𝑒 4 𝑣 3 𝑒 5

16 Algorithms: (2)Greedy-GEACC
Approximation ratio: 𝟏 𝟏+𝐦𝐚𝐱 𝒄 𝒖 Basic idea Greedily add the most similar unmatched pair u 1 (3) u 2 (1) u 3 (1) u 4 (2) u 5 (3) Conflicts 𝑣 1 (5) 0.93 0.43 0.84 0.64 0.65 𝑣 3 𝑣 2 (3) 0.35 0.19 0.21 0.4 NA 𝑣 3 (2) 0.86 0.57 0.78 0.79 0.68 𝑣 1 𝑒 1 𝑣 1 𝑒 2 H = ({ 𝑣 2 , 𝑒 3 }) 𝑣 2 𝑒 3 π‘€π‘Žπ‘₯π‘†π‘’π‘š=4.28 𝑒 4 𝑣 3 𝑒 5

17 Algorithms: (3)Prune-GEACC
An exact algorithm for small dataset Search the space in increasing order of π‘ π‘–π‘š( 𝒍 𝑣 , 𝒍 𝑒 ) values and calculate an upper bound to do the pruning

18 Experiments Two baselines
Random-V: iterate over each π‘£βˆˆπ‘‰, during which add each pair {𝑣,𝑒} with probability 𝑐 𝑣 |π‘ˆ| if it satisfies all the constraints Random-U: iterate over each π‘’βˆˆπ‘ˆ, during which add each pair {𝑣,𝑒} with probability 𝑐 𝑒 |𝑉| if it satisfies all the constraints Test on both synthetic data and real Meetup data

19 Experiments: Vary |𝑉| Default: π‘ˆ =1000, 25% events are conflicting

20 Experiments: Vary 𝐢𝐹 /(|𝑉|( 𝑉 βˆ’1)/2)
Default: V =100, π‘ˆ =1000

21 Experiments: Real Data
Auckland: 𝑉 =37, π‘ˆ =569

22 Experiments: Scalability

23 Experiments: Pruning 𝑉 =5, π‘ˆ =15

24 Conclusion Identify a novel event-participant arrangement problem (GEACC), which is NP-hard Design two approximate solutions and an exact solution Extensive experiments on both real and synthetic datasets

25 Thank you


Download ppt "Conflict-Aware Event-Participant Arrangement"

Similar presentations


Ads by Google