Presentation is loading. Please wait.

Presentation is loading. Please wait.

4. a. BAD and BCD; ABC and ADC; DCB and DAB; ADC and ABC

Similar presentations


Presentation on theme: "4. a. BAD and BCD; ABC and ADC; DCB and DAB; ADC and ABC"— Presentation transcript:

1 4. a. BAD and BCD; ABC and ADC; DCB and DAB; ADC and ABC
Inscribed Angles GEOMETRY LESSON 11-3 12. a = 85; b = 47.5; c = 90 13. a = 50; b = 90; c = 90 14. p = 90; q = 122 15. w = 123 16. x = 65; y = 130 17. e = 65; f = 130 18. a = 26; b = 64; c = 42 6. 180 7. a = 218; b = 109 8. a = 54; b = 30; c = 96 9. a = 112; b = 120; c = 38 10. a = 101; b = 67; c = 84; d = 80 11. x = 36; y = 36 Pages Exercises 1. ACB; AB 2. RQS; RS 3. MPN; MN 4. a. BAD and BCD; ABC and ADC; DCB and DAB; ADC and ABC b. ABC and BCD; obtuse 5. 58 11-3

2 Inscribed Angles 19. a = 22; b = 78; c = 156
GEOMETRY LESSON 11-3 19. a = 22; b = 78; c = 156 20. a = 30; b = 60; c = 62; d = 124; e = 60 21. a. 96 b. 55 c. 77 d. 154 22. a. 40 b. 50 c. 40 d. 40 e. 65 23. a. 30 b. 78 c. 95 d. 105 e. 85 f. 75 24. a. 64 b. 116 c. 58 d. 90 e. 90 f. 58 PQR QRS since they are alt. int Since inscribed intercept arcs, mPR = mQS. s 11-3

3 b. isosc. trapezoid; justifications may vary.
Inscribed Angles GEOMETRY LESSON 11-3 26. a. Check students’ work. b. isosc. trapezoid; justifications may vary. Sample: arcs between two || chords are . 27. a. 77 b. 36 28. Rectangle; || chords are equidist. from center. 1 7 29. about 7.1 cm by 7.1 cm 30. about 4.3 cm for each side 31. about 7.1 cm legs, and a 10 cm base 32. Answers may vary. Sample: a. If the cameras’ lenses open at = , then in the positions shown they share the same arc of the scene. b. No; the distances from each position of the scene to each camera affect the look of the scene. s 11-3

4 37. a. CFE and FEG; ECD and EGD
Inscribed Angles GEOMETRY LESSON 11-3 37. a. CFE and FEG; ECD and EGD b. CED c. EFG and EDG; FED and FGD 38. 33. false 34. true 35. true ACB is a rt. because it is inscribed in semicircle ACB, and if a line is to a radius at its endpoint, it is tangent to the circle. 39. In the construction below, RS = x, ST = y, O is the mdpt. of RT, and QS RT. 11-3

5 40. 1. O with inscribed ABC (Given) 2. m ABO = mAP; m OBC = mPC
Inscribed Angles GEOMETRY LESSON 11-3 40. 1.  O with inscribed ABC (Given) 2.  m ABO = mAP; m OBC = mPC (Inscribed Thm., Case I)  3. m ABO + m OBC = m ABC ( Add. Post.)  4.  mAP + mPC = m ABC (Subst.)  5.  (mAP + mPC) = m ABC (Distr. Prop.)  6.  mAC = m ABC (Arc Add. Post.) . 1 2 41. 1.  S with inscribed PQR (Given)  2.  m PQT = mPT (Inscribed Thm., Case I) 3.  m RQT = mRT (Inscr. Thm., Case I)  4.  mPR = mPT – mRT (Arc Add. Post.)  5.  m PQR = m PQT – m RQT ( Add. Post.)  6.  m PQR = mPT – mRT (Subst.) 7.  m PQR = mPR (Subst.) 11-3

6 42. 1. O, A intercepts BC, and D intercepts BC (Given)
Inscribed Angles GEOMETRY LESSON 11-3 42. 1.  O, A intercepts BC, and D intercepts BC (Given)  2.  m A = mBC and m D = mBC (Inscr. Thm.) 3.  m A = m D (Subst.)  4.  A D (Def. of ) 43. 1.  O with inscribed CAB in a semicircle (Given)  2. m CAB = mBDC (Inscr. Thm.) 3.  mBDC = (Meas. of semicircle = 180.) 4.  m CAB = 90 (Subst.)  CAB is a rt (Def. of rt. ) . 1 2 11-3

7 44. 1. quadrilateral ABCD inscribed in O (Given) 2. m A = mBCD and
Inscribed Angles GEOMETRY LESSON 11-3 quadrilateral ABCD inscribed in O (Given)  2.  m A = mBCD and m C = mBAD (Inscr. Thm.)  3. m A + m C = mBCD + mBAD (Add. Prop.)  4. mBCD + mBAD = (Entire circle = 360°.)  5. m A + m C = (Subst. & Mult. Prop.) 6.  A and C are suppl. (Def. of suppl.) 44. (continued) 7. m B = mADC and m D = mABC (Inscr. Thm.)  8. m B + m D = mADC + mABC (Add. Prop.)  9. mADC + mABC = (Entire circle = 360.)  10. m B + m D = (Subst. and Mult. Prop.)  11.  B and D are suppl. (Def. of suppl.) . 1 2 11-3

8 45. 1. GH and tangent intersecting at H on E (Given)
Inscribed Angles GEOMETRY LESSON 11-3 GH and tangent intersecting at H on E (Given)  2. Construct diameter HD intersecting circle E at D. (Constr.)  3.  DHI is a rt (Tangent and radius are .)  4. DGH is a semicircle of measure (Def. of semicircle)  5. m DHG + m GHI = m DHI ( Add. Post.) 6. mDG + mGFH = mDGH (Arc Add. Post.)    . 45. (continued) 7. 90 = m DHG + m GHI (Subst.)  8. 180 = mDG + mGFH (Subst.)  9. 90 = (mDG + mGFH) (Div. Prop.)  10. m DHG + m GHI = mDG + mGFH (Subst. and Distr. Prop.)  11. m DHG = mDG (Inscr. Thm.)  12. m GHI = mGFH (Subtr. Prop.) 1 2 11-3

9 = 108; mXY = 112 = 2m XYZ; thus, m XYZ = 56.
Inscribed Angles GEOMETRY LESSON 11-3 46. A 47. I 48. C 49. [2] a. mWY = 140; mWX = 2 • 54 = 108; mXY = = 2m XYZ; thus, m XYZ = 56. b. 56 [1] incorrect answer OR incorrect explanation 50. [4] a. mADC = 140, so mABC = 220, and m D = 110. b. m ACB = 90, because it is inscribed in a semicircle. c. 180 = x. Thus, 70 = 4x and x = 17.5. [3] appropriate methods, but with one computational error [2] incorrect methods solved correctly OR correct methods solved incorrectly [1] correct answers to a–c, without work shown 11-3

10 57. Both have rt. and the vertical are , so are ~ by AA ~ Post.
Inscribed Angles GEOMETRY LESSON 11-3 in.2 cm2 m2 57. Both have rt. and the vertical are , so are ~ by AA ~ Post. 58. a. 960 ft b. about 0.18 mi s 11-3


Download ppt "4. a. BAD and BCD; ABC and ADC; DCB and DAB; ADC and ABC"

Similar presentations


Ads by Google