Presentation is loading. Please wait.

Presentation is loading. Please wait.

Geometric Phase Effects in Reaction Dynamics

Similar presentations


Presentation on theme: "Geometric Phase Effects in Reaction Dynamics"— Presentation transcript:

1 Geometric Phase Effects in Reaction Dynamics
Stuart C. Althorpe Department of Chemistry University of Cambridge, UK

2 Quantum Reaction Dynamics
B B C C A A

3 Born-Oppenheimer Approximation
C C A A ‘clamped nucleus’ electronic wave function exact: B.-O.: assume v. small Potential energy Nuclear dynamics S.E.

4 Reactive Scattering B B C C A A rearrangement scattering b.c. A + BC
resonances A + BC AB + C 3 or 4 atom reactions propagator H + H2  H2 + H H + HX  H2 + X H + H2O  OH + H2

5 (Group) Born-Oppenheimer Approximation
not small conical intersection derivative coupling terms

6 Conical intersections
‘Non-crossing rule’ V1 X V0

7 ‘Non-crossing rule’ ‘N − 2 rule’ N = 3 N = 2 N = 1 V1 V0

8 Geometric (Berry) Phase
Herzberg & Longuet-Higgins (1963) — double-valued BC cut-line Aharanov- Bohm

9 ∫ Ψ(x,t) = dx0 K(x,x0,t) Ψ(x0,0) K(x,x0,t) = Σ eiS/ħ
path K(x,x0,t) = Ke(x,x0,t) Ko(x,x0,t) Ψ(x,t) = Ψe(x,t) + Ψo(x,t) n = −1 n = 0 Winding number of Feynman paths Schulman, Phys Rev 1969; Phys Rev D 1971; DeWitt, Phys Rev D 1971

10 ∫ Ψ(x,t) = dx0 K(x,x0,t) Ψ(x0,0) K(x,x0,t) = Σ eiS/ħ − −
path K(x,x0,t) = Ke(x,x0,t) Ko(x,x0,t) Ψ(x,t) = Ψe(x,t) + Ψo(x,t) n = -1 n = 0 repeat calculation with and without cut-line Ψe(x,t) Ψo(x,t)

11 Bound-state BC Scattering BC cut-line

12 H + H2  HH + H +

13 H + H2  HH + H HA + HBHC + Ψo Ψe HAHB + HC HAHC + HB

14 + H + H2  HH + H Ψe Ψo q ∞ HA HBHC Internal coordinates
differential cross section Internal coordinates Scattering angles

15 + H + H2  HH + H Ψe Ψo HA HBHC Internal coordinates Scattering angles
Scattering experiments Zare (Stanford), Yang (Dalian) Internal coordinates Scattering angles J.C. Juanes-Marcos, SCA, E. Wrede, Science 2005

16 + Ψe Ψo High collision energy ‡ ‡ ‡ 0021 2.3 eV 3.0 eV DCS (Ǻ2Sr-1)
F. Bouakline, S.C. Althorpe and D. Peláez Ruiz, JCP  (2008).

17 Conical intersections
Domcke, Yarkony, Köppel (eds) Conical Intersections (World Scientific, New Jersey, 2003).

18 Ψo Ψe + on two coupled surfaces? Simply connected?
Discontinuous paths?

19

20 Ψo + Ψe Ψ = Ψe + Ψo ~ very small Ψ = Ψe − Ψo Geometric phase

21 Ψo Ψe on two coupled surfaces? + Discontinuous paths?

22 + Time-ordered product = ∑….∑∑ K(s,x;s0,x0|t) K(s,sN….s2,s1,s0;x,x0|t)
P. Pechukas, Phys Rev 1969 K(s,x;s0,x0|t) = ∑….∑∑ K(s,sN….s2,s1,s0;x,x0|t) SN S2 S1 S=1 x0 = S=1 x + S=0 S=0 n = 0 SCA, Stecher, Bouakline, J Chem Phys 2008

23 Ψo Ψe on two coupled surfaces? +

24 Ψo Ψe on two coupled surfaces Ψe Ψo

25

26 Ψo Ψe +

27 Ψo Ψe +

28 S=1 S=0 P0/P1 1.93 1.25

29 Negligible phase effects on population transfer
Pyrrole H N 1B1(πσ*)-S0 Conical Intersection (surfaces of Vallet et al. JCP 2005) Negligible phase effects on population transfer

30 GP-enhanced relaxation

31 Conclusions GP effects small in reaction dynamics except possibly:
at low temperatures in short-time quantum control experiments

32 Thanks for listening Dr Foudhil Bouakline Thomas Stecher


Download ppt "Geometric Phase Effects in Reaction Dynamics"

Similar presentations


Ads by Google