Download presentation
Presentation is loading. Please wait.
1
Lecture #9 Regulation
2
Multiple levels of enzyme regulation: 1) gene expression, 2) interconversion, 3) ligand binding, 4) cofactor availability
3
Outline Phenomenology of regulation and signaling
The mathematics of regulatory coupling Simulating regulation: Enzymes as molecules in simulation Fractional states of macromolecular pools Monomers, dimers, tetramers, …
4
Phenomenology 1. Built-in bias; ‘+’ or ‘-’ activation inhibition
2. Active concentration range Gain Local vs. distant active range rate i ∂rate/∂i i x x y
5
THE MATHEMATICS OF REGULATION OF ENZYME ACTIVITY
Local regulation THE MATHEMATICS OF REGULATION OF ENZYME ACTIVITY
6
Local Regulation: The five basic cases
mass action kinetics x v=kx No regulation Feedback inhibition Feedback activation Feedforward inhibition Feedforward activation - x x + regulated rates - x + x
7
Combination of Rate Constants
“local” regulation vs. “distant” regulation sign bias gain magnitude
8
The ‘Net’ Rate Constant:
an eigenvalue or a systems time constant x + x + - x x -
9
A Principle for Local Regulation
10
Dynamic Effects of Regulation
(advanced)
11
Inhibition
12
The Steady State
13
Parametric Sensitivity
steady state concentration increases response is faster
14
Dynamic Response a - x Mass action kinetics Hill kinetics
15
Activation
16
In a steady state the mass balance becomes:
Activation rate x (s) (u) + (s) stable (u) unstable x unique mult In a steady state the mass balance becomes: l=0 simultaneously satisfied
17
Key Quantities
18
Multiple Steady States
to =fn(a) one three = fn(a)
19
Eigenvalues and their location in the complex plane
Im Re Transient response: “smooth” landing overshoot damped oscillation sustained oscillation chaos
20
Some observations Regulation moves the eigenvalues in the complex plane (only discussed real values here) Eigenvalues are systemic time constants The mathematics to analyze regulation is complex Local feedback inhibition/feedforeward activation is stabilizing (Re(l)-> more negative) Local feedback activation/feedforeward inhibition is destabilizing (Re(l)-> more positive)
21
Simulating regulation
ENZYMES AS MOLECULES
22
Regulation at a “Distance”
biosynthetic pathway perturbation primary pathway x6 x1 x2 x5 x7 regulator binding site
23
The Dynamic Equations Time derivative Fluxes Kinetic expressions
24
The Steady-State Equations
25
Complicated to interpret the time responses: what is going on?
Simulation Results 10x 1.0 0.1 t=0 t b1 x1 x5 b1 v0 v1 v5 Complicated to interpret the time responses: what is going on?
26
Phase Portrait and Pool Interpretation
10x 1.0 0.1 t=0 t b1 flux balancing on biosynthetic pathway flux x1 x5 b1 v0 v1 v5 state of the enzyme concentration
27
Regulation of Gene Expression
v7 (-) translation decay x7 x6 x5 inhibition of translation
28
Simulation Results total enzyme ≠ const fast metabolic
10x 1.0 0.1 t=0 t b1 x1 x5 b1 v0 v1 v5 total enzyme ≠ const fast metabolic inhibitory response slow response of protein translation
29
Phase Portrait and Pool Interpretation
flux balancing on biosynthetic pathway flux 10x 1.0 0.1 t=0 t b1 x1 x5 b1 v0 v1 v5 concentration state of the enzyme
30
Allosteric Regulation of Enzyme Activity
dimer tetramer
31
Simulation Results: monomer, dimer, tetramer disturbance rejection
10x 1.0 0.1 t=0 t b1 x1 x5 b1 v0 v1 v5 dimer tetramer monomer disturbance rejection tetramer > dimer > monomer
32
Some observations Enzymes can be added as molecules into simulation models Enzymes will have multiple functional states The fractional state is important Tetramers are more effective than dimers that are more effective than monomers when it comes to regulation
33
Summary The activities of gene products are often directly regulated.
Regulation can be described by: i) its bias, ii) the concentration range over which the regulatory molecule is active and iii) its strength, that is how sensitive the flux is to changes in the concentration of the regulator. In addition the `distance' in the network between the site of regulation and the formation of the regulator is an important consideration. In general, local signals that: support the natural mass action trend in a network are `stabilizing’ counter the mass action trend may destabilize the steady state and create multiple steady states.
34
Summary Regulation of enzyme activity comes down to:
i) the functional state of the gene product (typically fast), ii) regulating the amount of the gene product present (typically slow); and examining the functional state of the pool formed by the amount of the active gene product and then the total amount itself. Regulatory mechanisms can be build on top of the basic stoichiometric structure of a network being analyzed and its description by elementary mass action kinetics are described by additional reactions that transform the regulated gene product from one state to the next with elementary reaction kinetics
35
Key Regulatory Step in Glycolysis (Advanced)
36
Regulatory Signals (Advanced)
Effective schema: x + v1(x) v2(x)
37
Kinetic Description (Advanced)
38
Scaling the Equations (Advanced)
39
Criteria for Existence of Multiple Steady States (Advanced)
40
Computation of Multiple Steady States (Advanced)
41
Additions Compute the fluxes across the multiple steady state region
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.