Presentation is loading. Please wait.

Presentation is loading. Please wait.

CS654: Digital Image Analysis

Similar presentations


Presentation on theme: "CS654: Digital Image Analysis"β€” Presentation transcript:

1 CS654: Digital Image Analysis
Lecture 40: Miscellaneous topics

2 Geometric transformations
About origin About an arbitrary point About a line

3 Pixel arrangement

4 Invariance

5 Scaling and interpolation

6 Scaling and interpolation

7 Sampling

8 New image

9 6-Connectivity

10 Color Model

11 Mask based edge detection
Smooth the input image 𝑓 π‘₯,𝑦 =𝑓 π‘₯,𝑦 βˆ—πΊ π‘₯,𝑦 𝑓 π‘₯ π‘₯,𝑦 = 𝑓 π‘₯,𝑦 βˆ— 𝑀 π‘₯ π‘₯,𝑦 𝑓 𝑦 π‘₯,𝑦 = 𝑓 π‘₯,𝑦 βˆ— 𝑀 𝑦 π‘₯,𝑦 |𝛻𝑓|= 𝑓 π‘₯ π‘₯,𝑦 +| 𝑓 𝑦 π‘₯,𝑦 | πœƒ= tan βˆ’1 𝑓 π‘₯ π‘₯,𝑦 𝑓 𝑦 π‘₯,𝑦 𝐼𝑓 π‘šπ‘Žπ‘”π‘›(π‘₯, 𝑦)>𝑇,π‘‘β„Žπ‘’π‘› π‘π‘œπ‘ π‘ π‘–π‘π‘™π‘’ 𝑒𝑑𝑔𝑒 π‘π‘œπ‘–π‘›π‘‘ 𝒇 π’š πœ΅π’‡ 𝜽 π’š+𝟏 38 66 65 14 35 64 12 15 42 π’š 𝒇 𝒙 π’šβˆ’πŸ π’™βˆ’πŸ 𝒙 𝒙+𝟏

12 Numerical Example

13 Numerical Example: Separable?

14 Segmentation The grey level values of the object and the background pixels are distributed according to the probability density function: 𝒑 𝒙 = πŸ‘ πŸ’ 𝒂 πŸ‘ 𝒂 𝟐 βˆ’ π’™βˆ’π’ƒ 𝟐 𝒇𝒐𝒓 π’ƒβˆ’π’‚β‰€π’™β‰€π’ƒ+𝒂 𝟎, π’π’•π’‰π’†π’“π’˜π’Šπ’”π’† with a = 1, b = 5 for the background and a = 2, b = 7 for the object. Sketch the two distributions and determine the range of possible thresholds.

15 Segmentation

16 Weight of a 3Γ—3 matrix for edge detection

17 Mask design Line detection kernels which respond maximally to horizontal, vertical and oblique single pixel wide lines -1 2 -1 2 -1 2 2 -1 Horizontal Vertical +45o -45o

18 Mask processing -1 2 -1 2 -1 2 βŠ—


Download ppt "CS654: Digital Image Analysis"

Similar presentations


Ads by Google