Presentation is loading. Please wait.

Presentation is loading. Please wait.

Factors – Learning Outcomes

Similar presentations


Presentation on theme: "Factors – Learning Outcomes"β€” Presentation transcript:

1 Factors – Learning Outcomes
Factorise expressions such as: π‘Žπ‘₯, π‘Žπ‘₯𝑦, where π‘Žβˆˆβ„€ π‘Žπ‘π‘₯𝑦+π‘Žπ‘¦, where π‘Ž, π‘βˆˆβ„€ 𝑠π‘₯βˆ’π‘‘π‘¦+𝑑π‘₯βˆ’π‘ π‘¦, where π‘₯,𝑑,π‘₯,𝑦 are variable π‘Ž π‘₯ 2 +𝑏π‘₯, where π‘Ž,π‘βˆˆβ„€ π‘₯ 2 +𝑏π‘₯+𝑐, where 𝑏,π‘βˆˆβ„€ π‘₯ 2 βˆ’ π‘Ž 2

2 Factorise π‘Žπ‘₯, π‘Žπ‘₯𝑦 Recall how to distribute:
Distribution allows operations to break BEMDAS without changing the answer. e.g. 2Γ— 1+3 =2Γ—1+2Γ—3

3 Factorise π‘Žπ‘₯, π‘Žπ‘₯𝑦 Write down what a factor is.
A factor is a number that divides evenly (β€œgoes into”) another number. Write down the factors of 12 and 20, and find the highest common factor. Write down the factors of 8 and 8π‘₯, and find the highest common factor. Write down the factors of 6π‘₯ and 8, then find the highest common factor.

4 Factorise π‘Žπ‘₯, π‘Žπ‘₯𝑦 Find the highest common factor of 12 and 15π‘₯.
What is ? What is 15π‘₯ 3 ? To factorise 12+15π‘₯, we write 3(4+5π‘₯) What do you get if you distribute 3(4+5π‘₯)?

5 Factorise π‘Žπ‘₯𝑏𝑦+π‘Žπ‘¦ Find the highest common factor of 16 and 12π‘₯.
What is ? What is 12π‘₯ 4 ? Factorise 16+12π‘₯.

6 Factorise π‘Žπ‘₯𝑏𝑦+π‘Žπ‘¦ Find the highest common factor of π‘Žπ‘₯ and 𝑏π‘₯.
What is π‘Žπ‘₯ π‘₯ ? What is 𝑏π‘₯ π‘₯ ? Factorise π‘Žπ‘₯+𝑏π‘₯.

7 Factorise π‘Žπ‘₯𝑏𝑦+π‘Žπ‘¦ Factorise each of the following: 14π‘₯+7 4π‘₯+20 6π‘₯+9𝑦
5π‘₯+15𝑦 3π‘₯βˆ’9𝑦 2π‘₯+12π‘₯𝑦 4π‘₯𝑦+32𝑦𝑧 3π‘₯+6𝑦+9𝑧

8 Factorise π‘Žπ‘₯𝑏𝑦+π‘Žπ‘¦ Factorise 2π‘₯π‘¦βˆ’4π‘₯𝑀 Factorise 4π‘Žπ‘+8𝑏 Factorise π‘₯𝑦+𝑀𝑦
2003 OL P1 Q5 Factorise 2π‘₯π‘¦βˆ’4π‘₯𝑀 2005 OL P1 Q5 Factorise 4π‘Žπ‘+8𝑏 2006 OL P1 Q5 Factorise π‘₯𝑦+𝑀𝑦 Factorise 4 π‘Ž 2 +8π‘Ž 2015 OL P1 Q9 Factorise fully 7π‘₯βˆ’21𝑦

9 Factorise 𝑠π‘₯βˆ’π‘‘π‘¦+𝑑π‘₯βˆ’π‘ π‘¦
This is called factorising by grouping. Take π‘Ÿπ‘‘βˆ’4𝑑+2π‘Ÿβˆ’8 as an example. There is no common factor for all four terms. Factorise π‘Ÿπ‘‘βˆ’4𝑑. Factorise 2π‘Ÿβˆ’8. Write the expression as the sum of the answers to a) and b). 𝑑 π‘Ÿβˆ’4 +2(π‘Ÿβˆ’4) Note that (π‘Ÿβˆ’4) is now a common factor. Factorising again gives: (π‘Ÿβˆ’4)(𝑑+2)

10 Factorise 𝑠π‘₯βˆ’π‘‘π‘¦+𝑑π‘₯βˆ’π‘ π‘¦
Write the expression as the sum of a) and b). Note that 3 2+π‘₯ +𝑐(π‘₯+2) both have (π‘₯+2). (π‘₯+2 and 2+π‘₯ are the same thing mathematically). Factorising gives (π‘₯+2)(3+𝑐)

11 Factorise 𝑠π‘₯βˆ’π‘‘π‘¦+𝑑π‘₯βˆ’π‘ π‘¦
Factorise each of the following: π‘π‘‘βˆ’3π‘βˆ’π‘Žπ‘‘+3π‘Ž π‘₯𝑐+π‘₯𝑏+𝑦𝑐+𝑦𝑏 10π‘₯𝑦+14π‘₯+15𝑦+21 10π‘₯𝑧+65π‘₯+8π‘¦π‘§βˆ’52𝑦 20π‘₯𝑦+9+12π‘₯+15𝑦 𝑝 π‘₯+𝑦 βˆ’π‘₯βˆ’π‘¦

12 Factorise 𝑠π‘₯βˆ’π‘‘π‘¦+𝑑π‘₯βˆ’π‘ π‘¦
2003 OL P1 Q5 Factorise π‘Žπ‘βˆ’2π‘Žπ‘+3π‘βˆ’6𝑐 2004 OL P1 Q5 Factorise 3π‘₯βˆ’3𝑦+π‘Žπ‘₯βˆ’π‘Žπ‘¦ 2005 OL P1 Q5 Factorise π‘Žπ‘+2π‘Žπ‘+5𝑏+10𝑐 2006 OL P1 Q5 Factorise π‘Žπ‘₯βˆ’π‘Žπ‘¦+𝑏π‘₯βˆ’π‘π‘¦ 2016 OL P1 Q8 Factorise 3π‘Žπ‘₯+π‘Žπ‘¦+3𝑐π‘₯+𝑐𝑦

13 Factorise π‘Ž π‘₯ 2 +𝑏π‘₯ e.g. Factorise 2 π‘₯ 2 +5π‘₯
What is the highest common factor? 2 π‘₯ 2 π‘₯ =2π‘₯ 5π‘₯ π‘₯ =5 Factorising gives: 2 π‘₯ 2 +5π‘₯=π‘₯ 2π‘₯+5

14 Factorise π‘Ž π‘₯ 2 +𝑏π‘₯ e.g. Factorise 6 π‘₯ 2 +8π‘₯
What is the highest common factor? 6 π‘₯ 2 2π‘₯ =3π‘₯ 8π‘₯ 2π‘₯ =4 Factorising gives: 6 π‘₯ 2 +8π‘₯=2π‘₯(3π‘₯+4)

15 Factorise π‘Ž π‘₯ 2 +𝑏π‘₯ Factorise each of the following: 3 π‘₯ 2 +7π‘₯
8 π‘₯ 2 βˆ’4π‘₯ 6 π‘₯ 2 +24π‘₯ 6 π‘₯ 2 +10π‘₯ 4 𝑦 2 +3𝑦 π‘š 4 βˆ’3 π‘š 2 6 π‘₯ 2 +8π‘₯+12𝑦π‘₯

16 Factorise π‘₯ 2 +𝑏π‘₯+𝑐 These expressions are called quadratic trinomials. We will cover two methods for factorising quadratic trinomials. Firstly, guide number. e.g. Factorise π‘₯ 2 +7π‘₯+12

17 Factorise π‘₯ 2 +𝑏π‘₯+𝑐 Identify 𝑐 (the guide number) and set it aside.
factor pairs of 𝑐 are sets of two numbers which multiply to get 𝑐 Identify 𝑐 (the guide number) and set it aside. List out factor pairs of 𝑐.

18 Factorise π‘₯ 2 +𝑏π‘₯+𝑐 Add up the numbers in each factor pair.
Note which pair add up to 𝑏.

19 Factorise π‘₯ 2 +𝑏π‘₯+𝑐 Replace 𝑏 with the two factors you picked.
Factorise by grouping.

20 Factorise π‘₯ 2 +𝑏π‘₯+𝑐 Secondly, big X. e.g. Factorise π‘₯ 2 +7π‘₯+12
Draw a big X.

21 Factorise π‘₯ 2 +𝑏π‘₯+𝑐 On each of the left ends, put an π‘₯.
factor pairs of 𝑐 are sets of two numbers which multiply to get 𝑐 On each of the left ends, put an π‘₯. On the right ends, put a factor pair of 𝑐. π‘₯ 1 e.g. Factorise π‘₯ 2 +7π‘₯+12 π‘₯ 12

22 Factorise π‘₯ 2 +𝑏π‘₯+𝑐 Multiply down each line of the X. Add the results.
1 1π‘₯ +12π‘₯ 13π‘₯ e.g. Factorise π‘₯ 2 +7π‘₯+12 π‘₯ 12

23 Factorise π‘₯ 2 +𝑏π‘₯+𝑐 If the sum matches 𝑏, you’ve found your factors.
If not, try other factors until you get 𝑏. π‘₯ 1 π‘₯ 2 (π‘₯ + 3) e.g. Factorise π‘₯ 2 +7π‘₯+12 π‘₯ 12 π‘₯ 6 (π‘₯ + 4) 1π‘₯ +12π‘₯ 13π‘₯ 2π‘₯ +6π‘₯ 8π‘₯ 3π‘₯ +4π‘₯ 7π‘₯ So π‘₯ 2 +7π‘₯+12=(π‘₯+3)(π‘₯+4)

24 Factorise π‘₯ 2 +𝑏π‘₯+𝑐 Factorise each of the following: π‘₯ 2 +10π‘₯+24
π‘Ž 2 +12π‘Ž+27 𝑦 2 +8𝑦+15 𝑏 2 +6𝑏+8 𝑐 2 +9𝑐+14 𝑑 2 +13𝑑+36 𝑧 2 +5𝑧+6 𝑧 2 +7𝑧+6 10𝑒+25+ 𝑒 2

25 Factorise π‘₯ 2 +𝑏π‘₯+𝑐 Be careful if some signs are negative:
e.g. Factorise π‘₯ 2 βˆ’π‘₯βˆ’12 = π‘₯ 2 +3π‘₯βˆ’4π‘₯βˆ’12 =π‘₯ π‘₯+3 βˆ’4 π‘₯+3 =(π‘₯+3)(π‘₯βˆ’4) Aside βˆ’πŸπŸ 1+βˆ’12 βˆ’11 2+βˆ’6 βˆ’4 3+βˆ’4 βˆ’1 4+βˆ’3 1 6+βˆ’2 4 12+βˆ’1 11 Guide number / grouping (π‘₯ + 3) 3π‘₯ βˆ’4π‘₯ βˆ’π‘₯ Big X (π‘₯ βˆ’ 4)

26 Factorise π‘₯ 2 +𝑏π‘₯+𝑐 Factorise each of the following: π‘₯ 2 βˆ’2π‘₯βˆ’15
π‘Ž 2 +2π‘Žβˆ’3 𝑦 2 βˆ’6𝑦+8 𝑏 2 βˆ’9𝑏+20 𝑐 2 +π‘βˆ’6 𝑧 2 +3π‘§βˆ’18 𝑧 2 βˆ’3π‘§βˆ’18 𝑧 2 βˆ’9𝑧+18 42βˆ’13𝑑+ 𝑑 2

27 Factorise π‘₯ 2 +𝑏π‘₯+𝑐 Factorise π‘₯ 2 +2π‘₯βˆ’8 Factorise π‘₯ 2 +2π‘₯βˆ’15
2003 OL P1 Q5 Factorise π‘₯ 2 +2π‘₯βˆ’8 2005 OL P1 Q5 Factorise π‘₯ 2 +2π‘₯βˆ’15 2007 OL P1 Q5 Factorise π‘₯ 2 βˆ’π‘₯βˆ’90 2008 OL P1 Q5 Factorise π‘₯ 2 βˆ’2π‘₯βˆ’24 2017 OL P1 Q11 Factorise π‘₯ 2 +4π‘₯βˆ’5. One of the factors is (π‘₯+5).

28 Factorise π‘₯ 2 βˆ’ π‘Ž 2 When an expression can be written as a square minus a square, (i.e. π‘₯ 2 βˆ’ 𝑦 2 ) it is called a difference of two squares. The factorisation can be written simply (π‘₯βˆ’π‘¦)(π‘₯+𝑦). e.g. π‘₯ 2 βˆ’ π‘Ž 2 = π‘₯βˆ’π‘Ž π‘₯+π‘Ž e.g. π‘š 2 βˆ’ 𝑛 2 =(π‘šβˆ’π‘›)(π‘š+𝑛) e.g βˆ’ 5 2 = 7βˆ’ = =24 If the two terms are not squares, they must be turned into squares first: e.g. π‘₯ 2 βˆ’16= π‘₯ 2 βˆ’ 4 2 =(π‘₯βˆ’4)(π‘₯+4)

29 Factorise π‘₯ 2 βˆ’ π‘Ž 2 Factorise each of the following: π‘₯ 2 βˆ’4 𝑦 2 βˆ’9
𝑧 2 βˆ’25 π‘Ž 2 βˆ’121 64βˆ’ 𝑏 2 10 2 βˆ’ 3 2 4.2 2 βˆ’ 3.8 2

30 Factorise π‘₯ 2 βˆ’ π‘Ž 2 Factorise 36βˆ’ 𝑦 2 Factorise π‘₯ 2 βˆ’25
2003 OL P1 Q5 Factorise 36βˆ’ 𝑦 2 2004 OL P1 Q5 Factorise π‘₯ 2 βˆ’25 2005 OL P1 Q5 Factorise π‘₯ 2 βˆ’ 𝑦 2 2006 OL P1 Q5 Factorise 𝑝 2 βˆ’36 2015 OL P1 Q9 Factorise π‘₯ 2 βˆ’25


Download ppt "Factors – Learning Outcomes"

Similar presentations


Ads by Google