Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mixed order phase transitions

Similar presentations


Presentation on theme: "Mixed order phase transitions"β€” Presentation transcript:

1 Mixed order phase transitions
David Mukamel Amir Bar, DM (PRL, 122, (2014))

2 Phase transitions of mixed order
(a) diverging length πœ‰β†’βˆž as in second order transitions πœ‰~ 𝑑 βˆ’πœˆ or πœ‰~ 𝑒 1/ 𝑑 πœ‡ (b) discontinuous order parameter as in first order transitions

3 1d Ising model with long range interactions 𝐽(π‘Ÿ)~1/ π‘Ÿ 2
Examples: 1d Ising model with long range interactions 𝐽(π‘Ÿ)~1/ π‘Ÿ 2 non-soluble but many of its properties are known 2. Poland-Scheraga (PS) model of DNA denaturation πœ‰~ 𝑒 1/ 𝑑 πœ‡ πœ‰~ 𝑑 βˆ’πœˆ 3. Jamming transition in kinetically constrained models πœ‰~ 𝑒 1/ 𝑑 πœ‡ Toninelli, Biroli, Fisher (2006) 4. β€œExtraordinary transition” in network rewiring Liu, Schmittmann, Zia (2012)

4 IDSI : Inverse Distance Square Ising model
𝐻=βˆ’ 𝑖>𝑗 𝐽 π‘–βˆ’π‘— 𝑆 𝑖 𝑆 𝑗 𝑆 𝑖 =Β±1 𝐽(π‘–βˆ’π‘—)~ 𝐽 π‘–βˆ’π‘— 𝛼 𝛼=2 For 1<𝛼≀2 the model has an ordering transition at finite T A simple argument: L 𝑙 𝐸 𝑙 =βˆ’ 2𝐽 π›Όβˆ’1 𝑙 𝐿 1βˆ’π›Ό + 2𝐽 π›Όβˆ’1 2βˆ’π›Ό ( 𝑙 2βˆ’π›Ό βˆ’1) Anderson et al (1969, 1971); Dyson (1969, 1971); Thouless (1969); Aizenman et al (1988)…

5 𝛼=2 model is special The magnetization m is discontinuous at 𝑇 𝑐 (β€œThouless effect”) Thouless (1969), Aizenman et al (1988) πœ‰~exp 1 π‘‡βˆ’ 𝑇 𝑐 KT type transition, Cardy (1981) Phase diagram H T IDSI Fisher, Berker (1982)

6 Dyson hierarchical version of the model (1971)
1/ 2 6 1/ 2 4 1/ 2 2 Mean field interaction within each block The Dyson model is exactly soluble demonstrating the Thouless effect

7 Exactly soluble modification of the IDSI model
microscopic configuration: 𝐻=βˆ’ 𝐽 𝑁𝑁 𝑖 𝑆 𝑖 𝑆 𝑖+1 βˆ’ 𝑖,𝑗 π‘€π‘–π‘‘β„Žπ‘–π‘› π‘’π‘Žπ‘β„Ž π‘‘π‘œπ‘šπ‘Žπ‘–π‘› 𝐽 π‘–βˆ’π‘— 𝑆 𝑖 𝑆 𝑗 𝐽(π‘–βˆ’π‘—)~ 1 π‘–βˆ’π‘— 2 𝐽 𝑁𝑁 , 𝐽 π‘–βˆ’π‘— >0 The interaction is in fact not binary but rather many body.

8 Summery of the results diverging correlation length at 𝑇 𝑐 πœ‰~ π‘‡βˆ’ 𝑇 𝑐 βˆ’πœˆ with nonuniversal 𝜈 Extreme Thouless effect with π‘š=0β†’π‘š= Β±1 Phase diagram H T The model is closely related to the PS model of DNA denaturation

9 The energy of a domain of length 𝑙
𝐸 𝑙 =βˆ’ 𝑖>𝑗 π‘–βˆ’π‘— 2 =βˆ’ π‘˜=1 π‘™βˆ’1 π‘™βˆ’π‘˜ π‘˜ ~βˆ’π‘Žπ‘™+ 𝑐 ln 𝑙+π‘π‘œπ‘›π‘ π‘‘. Interacting charges representation: 𝐻 𝑙 𝑖 , 𝑁 =βˆ’π‘Ž 𝑖=1 𝑁 𝑙 𝑖 + 𝑐 𝑖=1 𝑁 ln 𝑙 𝑖 +Δ𝑁 a, 𝑐 , Ξ” >0 Charges of alternating sign (attractive) on a line Attractive long-range nearest-neighbor interaction Chemical potential --suitable representation for RG analysis --similar to the PS model

10 Analysis of the model Grand partition sum
𝑍 𝐿,𝑇 = π‘˜ 𝑙 𝑖 𝑒 𝛽 𝑙 𝑙 1 𝛽 𝑐 𝐴 𝑒 𝛽 𝑙 𝑙 2 𝛽 𝑐 …..𝐴 𝑒 𝛽 𝑙 π‘˜ 𝑙 π‘˜ 𝛽 𝑐 𝑙 1 + …+ 𝑙 π‘˜ =L Grand partition sum 𝑄 𝑧 = 𝐿 𝑧 𝐿 𝑍(𝐿, 𝑇) 𝑄 𝑧 =𝐴 π‘ˆ 2 𝑧 1+ 𝐴 2 π‘ˆ 2 + 𝐴 4 π‘ˆ 4 +… Polylog function π‘ˆ 𝛽 𝑐 𝑧 = 𝑙=1 ∞ 𝑧 𝑙 𝑒 𝛽𝑙 𝑙 𝛽 𝑐 ≑ Ξ¦ 𝛽 𝑐 (𝑧 𝑒 𝛽 ) 𝑄 𝑧 = 𝐴 π‘ˆ 2 (𝑧) 1βˆ’ 𝐴 2 π‘ˆ 2 (𝑧)

11 𝑧 βˆ— is the closest pole to the origin
π‘ˆ 𝛽 𝑐 𝑧 = 𝑙=1 ∞ (𝑧 𝑒 𝛽 ) 𝑙 𝑙 𝛽𝑐 Μ… ≑ Ξ¦ 𝛽 𝑐 (𝑧 𝑒 𝛽 ) 𝑄 𝑧 = 𝐴 π‘ˆ 2 (𝑧) 1βˆ’ 𝐴 2 π‘ˆ 2 (𝑧) Polylog function 𝑧 βˆ— is the closest pole to the origin 𝑄(𝑧)~ 𝑧 βˆ—πΏ 𝑒 βˆ’π›½πΉ 𝐿,𝑇 ~ 𝑧 βˆ— 𝑒 βˆ’π›½π‘“ 𝑇 𝐿 𝑧 βˆ— = 𝑒 𝛽𝑓(𝑇) π‘ˆ 𝑧 βˆ— ,𝑇 =1/𝐴 𝐴<1, ferromagnetic coupling

12 Μ‡ Μ‡ π‘ˆ 𝛽 𝑐 𝑧 𝑒 𝛽 = 𝑙=1 ∞ (𝑧 𝑒 𝛽 ) 𝑙 𝑙 𝛽 𝑐 ≑ Ξ¦ 𝛽 𝑐 (𝑧 𝑒 𝛽 )
1< 1/𝐴 π‘ˆ(𝑧 𝑒 𝛽 ) 𝑧 𝑒 𝛽 1 π›½β†’βˆž 𝛽→0 Μ‡ 𝛽 𝑐 π‘ˆ 𝛽 𝑐 𝑧 𝑒 𝛽 = 𝑙=1 ∞ (𝑧 𝑒 𝛽 ) 𝑙 𝑙 𝛽 𝑐 ≑ Ξ¦ 𝛽 𝑐 (𝑧 𝑒 𝛽 ) Μ‡ 𝑧 𝑒 𝛽 1 𝑧 βˆ— e 𝛽 Phase transition: (𝑧 βˆ— 𝑒 𝛽 𝑐 )=1 , 𝛽 𝑐 𝑐 ≑𝑐 Unlike the PS model the parameter c is not universal

13 Nature of the transition
𝑝(𝑙)= 𝑍(πΏβˆ’π‘™) 𝑍(𝐿) 𝐴 1 𝑙 𝛽 𝑐 ~ (𝑧 𝑒 𝛽 ) 𝑙 𝑙 𝛽 𝑐 Domain length distribution 𝑝 𝑙 ~ 𝑒 βˆ’π‘™π›Ώπ‘§ 𝑙 𝑐 = 𝑒 βˆ’π‘™/πœ‰ 𝑙 𝑐 𝑐≑ 𝛽 𝑐 𝑐 Close to 𝑇 𝑐 : 𝑧=1βˆ’π›Ώπ‘§ characteristic length πœ‰= 1 𝛿𝑧 πœ‰β†’βˆž π‘“π‘œπ‘Ÿ 𝑇→ 𝑇 𝑐 Ξ¦ 𝑐 1βˆ’π›Ώπ‘§ β‰ˆ Ξ¦ 𝑐 1 βˆ’π›Ώ 𝑧 π‘βˆ’ <𝑐≀2 Ξ¦ 𝑐 1 βˆ’π›Ώπ‘§ 𝑐>2 π‘‘β‰‘π‘‡βˆ’ 𝑇 𝑐 ~ 𝛿 𝑧 π‘βˆ’ <𝑐≀2 𝛿𝑧 𝑐>2 πœ‰~ 𝑑 βˆ’πœˆ 𝜈= 1 π‘βˆ’ <𝑐≀ 𝑐>2

14 Two order parameters 1. 𝑛 order parameter 𝑛= 𝑁 𝐿 number of domains
π‘š= 𝑀 𝐿 magnetization 1. 𝑛 order parameter 𝑛= 1 𝑙 𝑙 ~ 1 ∞ 𝑙 1 𝑙 𝑐 𝑑𝑙 Where at 𝑇 𝑐 for 1<c≀ 𝑙 β†’βˆž for 𝑐> 𝑙 is finite 𝑛 is continuous <𝑐≀2 in both cases πœ‰β†’βˆž 𝑛 is discontinuous 𝑐>2

15 2. π‘š order parameter 𝑍 𝐿,𝑀 𝐿= 𝑙 𝑖 𝑀= βˆ’1 𝑖 𝑙 𝑖
𝑍 𝐿,𝑀 𝐿= 𝑙 𝑖 𝑀= βˆ’1 𝑖 𝑙 𝑖 𝑄 𝑧,π‘Ÿ = 𝐿,𝑀 𝑧 𝐿 π‘Ÿ 𝐿 + βˆ’πΏ βˆ’ 𝑍(𝐿,𝑀= 𝐿 + βˆ’ 𝐿 βˆ’ ) 𝑄 𝑧,π‘Ÿ = π΄π‘ˆ π‘§π‘Ÿ π‘ˆ( 𝑧 π‘Ÿ ) 1βˆ’ 𝐴 2 π‘ˆ π‘§π‘Ÿ π‘ˆ( 𝑧 π‘Ÿ ) π‘š=βˆ’ πœ• ln 𝑧 βˆ— (π‘Ÿ) πœ• ln π‘Ÿ (π‘Ÿ=1) β„Žβ‰‘ ln π‘Ÿ is the magnetic field 𝑇> 𝑇 𝑐 π‘š= (π‘Ÿβ†’ 1 π‘Ÿ symmetry) 𝑇< 𝑇 𝑐 either π‘§π‘Ÿ=1 or 𝑧 π‘Ÿ =1 π‘š=Β±1 Extreme Thouless effect

16 Phase diagram I n is continuous II and III n is discontinuous

17 β„Ž,𝑇 phase diagram βˆ’1<π‘š<1 π‘š=1 π‘š=βˆ’1 β„Ž 𝑇

18 Free energy 𝐹 𝐿,𝑁,𝑇 =𝐿𝑓(𝑛,𝑇)
Canonical analysis Free energy 𝐹 𝐿,𝑁,𝑇 =𝐿𝑓(𝑛,𝑇) 𝑄 𝑧,π‘ž = 𝐿,𝑁 𝑍 𝐿,𝑁 𝑧 𝐿 π‘ž 𝑁 𝑄 𝑧,π‘ž = π΄π‘ž π‘ˆ 2 (𝑧) 1βˆ’ 𝐴 2 π‘ž 2 π‘ˆ 2 (𝑧) 𝑍 𝐿,𝑁 = 1 2πœ‹π‘– π‘‘π‘§π‘‘π‘ž 𝑄(𝑧,π‘ž) 𝑧 𝐿+1 π‘ž 𝑁+1 𝑍 𝐿,𝑁 = 𝑒 βˆ’π›½πΏπ‘“(𝑛,𝑇) 𝑍 𝐿,𝑛 = 𝑑𝑧 4πœ‹π‘– π΄π‘ˆ(𝑧) 𝐿𝑛+2 𝐴 𝑧 𝐿+1 β‰ˆ 𝑑𝑧 4πœ‹π‘– 𝑒 βˆ’πΏ 𝑓 1 (𝑛,𝑧)

19 𝑓 𝑛> 𝑛 𝑐 =𝑙𝑛 𝑧 βˆ— βˆ’π‘›π‘™π‘› π΄π‘ˆ( 𝑧 βˆ— )
𝑍 𝐿,𝑛 = 𝑑𝑧 4πœ‹π‘– π΄π‘ˆ(𝑧) 𝐿𝑛+2 𝐴 𝑧 𝐿+1 β‰ˆ 𝑑𝑧 4πœ‹π‘– 𝑒 βˆ’πΏ 𝑓 1 (𝑛,𝑧) saddle point: 𝑛= π‘ˆ( 𝑧 βˆ— ) 𝑧 βˆ— π‘ˆβ€²( 𝑧 βˆ— ) 𝑓 𝑛> 𝑛 𝑐 =𝑙𝑛 𝑧 βˆ— βˆ’π‘›π‘™π‘› π΄π‘ˆ( 𝑧 βˆ— ) 𝑓 𝑛< 𝑛 𝑐 =𝑙𝑛 𝑧 𝑐 βˆ’π‘›π‘™π‘› π΄π‘ˆ( 𝑧 𝑐 )

20 c=2.5

21 Finite L correction: 𝑐=2.5 𝐿=1000

22 c=2.5

23 Finite L corrections c=2.5 L=1000

24 Renormalization group - charges representation
𝑍 𝑦,𝑐 = 𝑁=0 ∞ 𝑦 𝑁 𝑖=1 𝑁 𝑑 π‘Ÿ 𝑖 π‘Ž π‘Ÿ 𝑖+1 βˆ’ π‘Ÿ 𝑖 π‘Ž βˆ’π‘ Ɵ( π‘Ÿ 𝑖+1 βˆ’ π‘Ÿ 𝑖 βˆ’π‘Ž) y - fugacity a - short distance cutoff Length rescaling π‘Žβ†’π‘Ž 𝑒 πœ… This can be compensated by y rescaling 𝑦→ 𝑦 𝑒 πœ…(1βˆ’π‘)

25 Ɵ π‘Ÿ 𝑖+1 βˆ’ π‘Ÿ 𝑖 βˆ’π‘Ž 𝑒 πœ… β‰ˆΖŸ π‘Ÿ 𝑖+1 βˆ’ π‘Ÿ 𝑖 βˆ’π‘Ž βˆ’aπœ…π›Ώ( π‘Ÿ 𝑖+1 βˆ’ π‘Ÿ 𝑖 βˆ’π‘Ž)
𝑠 π‘™βˆ’π‘  𝑙 βˆ’ 𝑦 2 π‘Žπœ… π‘Ž π‘™βˆ’2π‘Ž 𝑑𝑠 1 𝑠 𝑐 π‘™βˆ’π‘ βˆ’π‘Ž 𝑐 The integral scales like 1/ 𝑙 𝑐 hence it does not renormalize c . Rather it renormalizes y.

26 Renormalization group equations
𝑑𝑦 π‘‘πœ… =π‘₯𝑦+ 𝑦 2 𝑑π‘₯ π‘‘πœ… =0 π‘₯≑1βˆ’π‘ compared with the Kosterlitz-Thouless model: 𝑑𝑦 π‘‘πœ… =π‘₯𝑦 𝑑π‘₯ π‘‘πœ… = 𝑦 2

27 Contribution of the dipole to the renormalized partition sum:
In the KT case: 𝑠 π‘™βˆ’π‘  𝑙 Contribution of the dipole to the renormalized partition sum: 𝑦 𝑙 𝑐 1+ 𝑦 2 π‘Žπœ… π‘Ž π‘™βˆ’π‘Ž 𝑑𝑠 𝑠 𝑠+π‘Ž 𝑐 π‘™βˆ’π‘ βˆ’π‘Ž π‘™βˆ’π‘  𝑐 1βˆ’ π‘Ž 𝑠 βˆ’ π‘Ž π‘™βˆ’π‘  𝑦 𝑙 𝑐 1+ 𝑦 2 πœ…π‘™π‘›π‘™ renormalizes c. (Cardy 1981)

28 πœ‰~ 𝑒 1/ π‘‡βˆ’ 𝑇 𝑐 𝑑𝑦 π‘‘πœ… =π‘₯𝑦+ 𝑦 2 𝑑𝑦 π‘‘πœ… =π‘₯𝑦 𝑑π‘₯ π‘‘πœ… =0 𝑑π‘₯ π‘‘πœ… = 𝑦 2 π‘₯≑1βˆ’π‘
Line of fixed points 𝑦 βˆ— =βˆ’ π‘₯ βˆ— πœ‰~ π‘‡βˆ’ 𝑇 𝑐 βˆ’πœˆ 𝜈= 1 π‘βˆ’1 πœ‰~ 𝑒 1/ π‘‡βˆ’ 𝑇 𝑐

29 Coarsening dynamics Particles with n-n logarithmic interactions
Biased diffusion, annihilation and pair creation 𝑝 𝑙 1 , 𝑙 2 + π‘ž 𝑙 3 , 𝑙 4 βˆ’ π‘ž 𝑙 5 , 𝑙 6 + 𝑙 1 𝑙 2 𝑙 3 𝑙 4 𝑙 5 𝑙 6 𝑝 𝑙,π‘˜ Β± = π‘™π‘˜ 𝑙±1 π‘˜βˆ“1 βˆ’π‘ βˆ’1 π‘ž 𝑙,π‘˜ Β± = 1+ 𝑦 βˆ“2 π‘™π‘˜ 𝑙+π‘˜+1 ±𝑐 βˆ’1

30 πœ•π‘ƒ(𝑙,𝑑) πœ•π‘‘ = πœ• 2 𝑃(𝑙,𝑑) πœ• 𝑙 2 + πœ• πœ•π‘™ ( 𝑐 𝑙 𝑃 𝑙,𝑑 )
Coarsening dynamics 𝑇=βˆžβ†’π‘‡< 𝑇 𝑐 The coarsening is controlled by the T=0 (y=0) fixed point πœ•π‘ƒ(𝑙,𝑑) πœ•π‘‘ = πœ• 2 𝑃(𝑙,𝑑) πœ• 𝑙 2 + πœ• πœ•π‘™ ( 𝑐 𝑙 𝑃 𝑙,𝑑 ) 𝑃 𝑙,𝑑 = 1 𝑑 𝑔( 𝑙 𝑑 ) Like the dynamics of the T=0 Ising model

31

32 𝑛= 1 <𝑙> - number of domains
Coarsening dynamics 𝑇=βˆžβ†’π‘‡= 𝑇 𝑐 𝑃 𝑙,𝑑 = 1 𝑙 𝑐 𝑔( 𝑙 𝑑 1/𝑧 ) Expected scaling form 𝑔 π‘₯β‰ͺ1 = 𝑔(π‘₯≫1)~ 𝑒 βˆ’π‘₯ 𝑛= 1 <𝑙> - number of domains 𝑛~ 𝑑 βˆ’πœ–(𝑐) with πœ– 𝑐 = 2βˆ’π‘ 𝑧

33 L=5000 c=1.5 𝑇= 𝑇 𝑐 𝑃 𝑙,𝑑 𝑑 1.5 z=2 z=1.5 𝑙/ 𝑑 0.5 𝑙/ 𝑑 0.66 𝑃 𝑙,𝑑 ~ 1 𝑙 𝑐 𝑓 𝑙 𝑑 1/𝑧

34 - Voter model (y=0, fixed c) 𝑛~ 𝑑 βˆ’πœ–(𝑐) with πœ– 𝑐 = 2βˆ’π‘ 𝑧

35 Summary Some models exhibiting mixed order transitions are discussed.
A variant of the inverse distance square Ising model is studied and shown to have an extreme Thouless effect, even in the presence of a magnetic field Relation to the IDSI model is studies by comparing the renormalization group transformation of the two models. The model exhibits interesting coarsening dynamics at criticality.

36 Domain representation of the 1 π‘Ÿ 2 Ising model
(Fortuin-Kasteleyn representation) H=βˆ’ 𝐽 𝑖,𝑗 ( 𝜎 𝑖 ,𝜎 𝑗 ) πœ† π‘Ÿ = 𝑒 𝛽 𝐽 π‘Ÿ ( 𝜎 𝑖 , 𝜎 𝑗 ) βˆ’1 𝑍 𝐿 = 𝜎 𝑖,𝑗 (1+ πœ† π‘–βˆ’π‘— ) = 𝜎 𝐸 𝑖,𝑗 πœ† π‘–βˆ’π‘— 𝐸 𝑖,𝑗 𝐸 𝑖,𝑗 =0,1 defines a graph on the vertices 1,…,𝐿 The sum is over all graphs E

37 A graph can be represented as composed of sub-graphs
separated by β€œbreaking points” πœ† π‘Ÿ = 𝑒 𝛽 𝐽 π‘Ÿ ( 𝜎 𝑖 , 𝜎 𝑗 ) βˆ’1 One has to calculate 𝑃 𝑙 - the probability that the distance between adjacent breaking points is 𝑙.

38


Download ppt "Mixed order phase transitions"

Similar presentations


Ads by Google