Presentation is loading. Please wait.

Presentation is loading. Please wait.

High g Li/B b-Beam Enrique Fernández-Martínez, MPI für Physik Munich

Similar presentations


Presentation on theme: "High g Li/B b-Beam Enrique Fernández-Martínez, MPI für Physik Munich"— Presentation transcript:

1 High g Li/B b-Beam Enrique Fernández-Martínez, MPI für Physik Munich
Based on a collaboration with: P. Coloma, A. Donini and J. López-Pavón arXiv: JHEP 0805:050,2008

2 bBeam g  100 P. Zucchelli hep-ph/0107006
B. Autin et al. physics/

3 bBeam + g  350 J. Burguet-Castell et al. hep-ph/0312068

4 bBeam g  100 Li/B Ionization Cooling Donini and E. F-M hep-ph/0603261
C. Rubbia et al. hep-ph/ Donini and E. F-M hep-ph/ C. Rubbia hep-ph/

5 bBeam + g  350 Li/B S. K. Agarwalla et al. hep-ph/0610333
C. Rubbia et al. hep-ph/ S. K. Agarwalla et al. hep-ph/ S. K. Agarwalla et al. hep-ph/ S. K. Agarwalla et al. arXiv:

6 The Golden channel in matter
(_) Resonant enhancement when with E  6GeV Magic Baseline 7000Km Expanded in 04 . 2 @ ÷ ø ö ç è æ D L sol sin 2q13 < 0.4 where E m atm 2 23 D = E m sol 2 12 D = 23 12 13 2 sin cos ~ q = J A. Cervera et al. hep-ph/

7 The baselines q13 = 5º d = 0, 90, -90º 7000km Inverted Hierarchy
Normal Hierarchy Resonant enhancement depending on the hierarchy

8 The baselines 2000km Normal Hierarchy 2000km Inverted Hierarchy
q13 = 5º d = 0, 90, -90º 7000km Inverted Hierarchy 7000km Normal Hierarchy

9 bBeam + g  350 Li/B P. Coloma et al. arXiv:0712.0796
S. K. Agarwalla et al. arXiv:

10 B and Li b-Beam fluxes We consider 3 different fluxes
“Nominal” 2·1018 decays/year “Medium” 5·1018 decays/year “Ultimate” 10·1018 decays/year “Ultimate” flux at 2000km

11 50kt Magnetized Iron Neutrino Detector: MIND
The Detector 50kt Magnetized Iron Neutrino Detector: MIND We consider 9 bins of 1 GeV between GeV 65% signal efficiency 10-4 or 10-5 backgrounds 2.5% and 5% or 10% and 20% systematics in signal and background Atmospheric background negligible a this energies with bunching CC charm signal eff  0.7 CC no-charm NC  ISS Detector Working Group arXiv:  

12 Degeneracies at 2000km CP discovery potential sign degeneracy
true solution sign degeneracy Nominal, Medium and Ultimate fluxes 3s Loss of sensitivity to CP violation and the mass hierarchy at the 2000km baseline due to the sign degeneracy

13 Combining the two baselines
2000km km 2000km 3s Nominal, Medium and Ultimate fluxes The sign degeneracy is solved at the 7000km baseline

14 CP discovery potential
ISS Physics Working Group arXiv:   2000km km LENF BLiBB 3s Nominal, Medium and Ultimate fluxes The CP discovery potential with the Ultimate flux between high g b-Beam and SBEAMS

15 q13 discovery potential 2000km + 7000km 3s
ISS Physics Working Group arXiv:   2000km km LENF BLiBB 3s Nominal, Medium and Ultimate fluxes The Ultimate flux similar to high g b-Beam The Medium flux between low and high g b-Beam The Nominal flux similar to Super-Beams

16 Sensitivity to the mass hierarchy
ISS Physics Working Group arXiv:   2000km km LENF BLiBB 3s Nominal, Medium and Ultimate fluxes All the fluxes worse than the optimum NF but better than the other facilities

17 Changing the detector mass
CP discovery potential Sensitivity to the mass hierarchy 3s 50 Kt near and 50 Kt far vs 80 Kt near and 20 Kt far

18 Systematics and Backgrounds
Effect of Systematics Effect of Background 2.5/5% and 10/20% systematic error considered 10-5 and 10-4 background considered Impact of the background and the systematic errors very small Performance limited by statistics No improvement if background is lowered below 10-5

19 Conclusions Strong complementarity between the two baselines
2000km detector very sensitive to d but spoiled by sign degeneracies 7000km detector resonant dependence on the mass hierarchy and no dependence on d solves degeneracies With Medium flux sensitivity to q13, d and the mass hierarchy down to sin2 2q13  3·10-4 Impact of the background and the systematic errors very small. Performance limited by statistics Sensitivity to CP violation can be improved adding mass to near detector or using He/Ne for the short baseline (see also S. K. Agarwalla et al. arXiv: )

20 The ionization cooling procedure
C.Rubbia et al. hep-ph/ 7Li + D → 8Li + p 6Li + 3He → 8B + n An excess of 1014 ions/s could be accumulated

21 Event Rates For 5yr exposure of each beam to a 50kt iron detector sin2 2q13 = 0.01 d Sign(Dm223) n 2000km n 7000km 90 + 595 20 155 2 -90 206 103 170 1 - 235 95 3 67 47 274 6 62


Download ppt "High g Li/B b-Beam Enrique Fernández-Martínez, MPI für Physik Munich"

Similar presentations


Ads by Google