Download presentation
Presentation is loading. Please wait.
Published bySukarno Gunawan Modified over 6 years ago
1
Stéphane Bailleux stephane.bailleux@univ-lille1.fr
Nitrosyl iodide, INO: millimeter-wave spectroscopy guided by ab initio quantum chemical computation Stéphane Bailleux June 26, 2015 – 70th ISMS Meeting
2
Content Introduction Results Prospects previous works
atmospheric implication of INO Results computations observations Prospects
3
Contributors Lille University acknowledgements Toho University (MMW)
Measurement Computations Toho University (MMW) S. Aiba H. Ozeki Lille University D. Duflot acknowledgements French National Research Agency
4
Spectroscopy of XNOy (y = 1 – 3)
X = { F, Cl, Br } : extensive studies : theoretical and experimental (uv/vis ; I.R. ; mmw) for the whole family (y = 1 – 3) X = I matrix isolated INO (1977) and INO2 (1979) : IR spectra gas-phase INO, INO2 and INO3 : low-resolution (1 cm-1) FTIR spectra (1991) INO , hi-resolution spectroscopy : this work
5
Atmospheric iodine photochemistry
Aerosol I INO2 I2, CH2I2, CH2IX, CH3I, … NO, XO IONO2 O3 loss Chem. Rev. 112 (2012), p – Saiz-Lopez et al. : Atmospheric chemistry of iodine
6
Predicted rotational spectrum
Quantum Chemistry Calculation MOLPRO CCSD(T) – F12b / cc–PVQZ–(PP) optimized structure (120 points grid) Geometry Dipole moments (D) : µa = µb = 0.04 Cs symmetry k = IN 2.356 Å NO 1.142 Å ∠INO °
7
Computed rotational constants
CCSD(T) / cc–PVQZ–(PP) Ae (MHz) Be (MHz) 2848.5 Ce (MHz) 2755.1 DJ (kHz) 1.67 DJK (kHz) -46.21 DK (kHz) 5 151 d (Hz) -70 d (Hz) -1.7
8
Hyperfine (quadrupolar) structure
⇒ 18 hyperfine sublevels I I = 5/2 Parameter (MHz) ANO / B3LYP Iodine coupling 3/2 caa 1/4 (cbb - ccc ) |cab| Nitrogen coupling 0.461 -2.365 1.371 cij (a = N, I) : cij (a) = eQa /h qij(a) HeQq(a) = - ⅙ Qa : ∇Ea
9
Millimeter-wave spectrometer (Toho)
Precursors : I2 + NO
10
J = 77 76 and 78 77 : observed Ka
11
Example : JKa,Kc = 751,75 741,74
12
frequency domain (/GHz)
Results assignement 68 µa-type Ja 74 – 78 Ka 00 – 10 frequency domain (/GHz) 400 – 440 number of parameters 10
13
Rotational constants observed rms(fit) = 50 kHz A0aa 81797.4 (49)4444
CCSD(T) – F12b cc–PVQZ–(PP) A0aa (49)4444 B0bb (51) 2848.5 C0cc (51) 2755.1 DJD (15) 001.67 DJKD (47) -46.21 DKD 5890 (50)00000 d1DD -77.70(20)0 -7000 d2DD (24) 0-1.7 HJHH HJKH (42) HKJH (80) HKHH (MHz) (kHz) (Hz) (Hz) rms(fit) = 50 kHz
14
Bond properties ∠XNO FNO ClNO BrNO INO re r0 rz X – N / Å 1.512 1.975
2.141 2.356 N – O / Å 1.136 1.139 1.147 1.142 ∠XNO 110°5’ 113°20’ 114°29’ 115°36’ contribution from ionic structures X-NO+ in nitrosyl halides: from 10% (FNO) to 40% (ClNOINO) NO+ NO r / Å 1.062 1.150
15
Concluding remarks First high-resolution rotational spectrum of INO
will prompt vibrational spectroscopic studies give the potential for atmospheric monitoring hyperfine structure : remains to be observed Unidentified lines: IONO ? INOx trace species in the atmosphere: gaps in our understanding of I / NOx interaction (gas and aerosols) impact on ozone levels
17
INO vibrational frequencies
Mode (cm-1) CCSD(T) / cc–PVQZ–(PP) FTIR gas-phase Ar matrix n1 (NO stretch) 1781.4 1785 1809 n2 (bend)00000 493.6 470 n3 (IN stretch)0 233.4 216
18
Source of atmospheric iodine
S. Archer et al. J. Geophys. Res CH2 ICl 44% CH2 I2 22% CH3 I 23% CH2 IBr : 5% C2H5 I : 6% di-halogenated species are much more photolabile
20
Computed hyperfine constants (MHz)
observed CCSD(T) – F12b cc–PVQZ–(PP) Iodine caa cbb 965.35 |cab| 615.92 Nitrogen 00.307 -4.884 01.371
21
Quadrupolar tensors of CH2 I 79Br
cxx / MHz – (49) (39) cyy / MHz – (17) (18) czz / MHz (49) – (39) h 0.0287 qza / °Hz
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.