Presentation is loading. Please wait.

Presentation is loading. Please wait.

Pseudo-scalar Pseudo-scalar final states and 12% rule

Similar presentations


Presentation on theme: "Pseudo-scalar Pseudo-scalar final states and 12% rule"— Presentation transcript:

1 Pseudo-scalar Pseudo-scalar final states and 12% rule
Wang Ping, Yuan ChangZheng, Mo Xiaohu IHEP, Beijing Symposium on 12% rule and  puzzle March 18-20, 2011, Beijing, China Mo Xiaohu

2 Outline Phase between strong and EM Phase study and 12% rule
Mixing model and 12% rule BESIII results Conclusion ? Mo Xiaohu

3 Phase between strong and EM
Mo Xiaohu

4 Possible hadronic excess in ψ(2S) decay and  puzzle
The Relative Phase φ J/ψ Decays: 1. AP : 90 ° M. Suzuki, PRD63, (2001) 2. VP : (106 ±10) ° J. Jousset et al., PRD41, 1389 (1990) D. Coffman et al., PRD38, 2695 (1988) N. N. Achasov, talk at Hadron2001 3. PP : (89.6 ±9.9) ° M. Suzuki, PRD60, (1999) 4. VV : (138 ±37) ° L. Köpke and N. Wermes, Phys. Rep. 74, 67 (1989) 5. NN : (89 ±15) ° R. Baldini et al., PLB444, 111 (1998) Large | phase | ~ 90º ψ’ Decays: ???… M. Suzuki, PRD63, (2001): Possible hadronic excess in ψ(2S) decay and  puzzle Mo Xiaohu

5 ± φ The phase study in e+e – experiment Phase
interference interference Take the continuum contribution and its interference effect into consideration , we could determine not only the magnitude but also the sign of the phase. Mo Xiaohu

6 A.Seiden,H.F.-W. Sadrozinski and
Phase in VP and VT mode A.Seiden,H.F.-W. Sadrozinski and E.Haber : Phys.Rev.D38, 824 (1988) P.Wang, C.Z.Yuan, X.H.Mo:HEP&NP27(2003)465 Contribution of one-photon annihilation at ψ(2S) in e+ e experiment P.Wang, X.H.Mo, C.Z.Yuan :PLB557(2003)192 The form factor of  0 and +   at ψ(2S) P.Wang, C.Z.Yuan, X.H.Mo:PRD70(2004)114014 J/ψ Decays:   , K*0 K0,   , K*+K φ = –72.0 ° ± 3.6° or ° ± 3.6° ψ’ Decays :  , K*0 K0,   , K*+ K φ = –90 ° or 180 ° VP -Parameterization VT -Parameterization  f : g(1sg) +e  a : g(1sg) +e K* K*2 : g(1sg)  2 e (1se/2)  f2' : g(1sg)  2 e (1se) Mo Xiaohu

7 φ PP -Parameterization Phase in PP mode PP -Parametrization π﹢π﹣ : E
π﹢π﹣ : (E+EC) K﹢K﹣: (√3/2)M +(E+EC) KS KL : (√3/2)M Phase in PP mode E.Haber and J.Perrier: Phys.Rev.D32, 2961 (1985) M. Suzuki, PRD60, (1999) Yuan, Wang, Mo: PLB567 (2003)73 PP -Parametrization π﹢π﹣ : E K﹢K﹣: (√3/2) M +E KS KL : (√3/2) M +Continuum Contribution B’ (π﹢π﹣) and A’+B’ (K﹢K﹣) known, KS KL is needed to extract the phase between A’ and B’. φ Mo Xiaohu

8 Phase in PP mode First measurement of the phase in ’ decays!
CLEO: B (’ KS KL ) =5.810 – 5 First measurement of the phase in ’ decays! Phase in PP mode K+K– & +  inputs ; Input 1: DASP; Input 2: BESI ; Input 3: K+K– from BESI & + by form factor. BES:B (’ KS KL ) =5.2410 – 5 BES:PRL 92, (2004); CLEO:PRD74, (2006). –82°, – 80° Mo Xiaohu +121°, +120°

9 J/, ’  KSKL Ks mass sidebands signal PRL 92, 052001 (2004) signal
14M ψ(2S) Bkg MC signal Ks mass sidebands 58M J/ψ PRL 92, (2004) B ’  Ks KL = (5.24± 0.47 ± 0.48 )  10 – 5 signal MC Bkg K*0KS+c.c. PRD 69, (2004) B J/  Ks KL =(1.82 ± 0.04 ± 0.13 )  10 – 4 Mo Xiaohu

10 12% rule, mixing model Mo Xiaohu

11 J/ , ’ ρπ A solution of ’ suppress
J.L. Rosner: PRD64, (2001) Wang, Yuan and Mo: PLB574,41(2003) To measure B(  ρπ), the best way is to do the energy scan! The band is for non-zero B(ψ(2S)ρπ)! σ(K*0K0+c.c.) For φ=﹣90°! MK3 UL (<6.3pb) Favors φ=﹣90°! Missing ρπ signal and/or enhanced K*0K0 signal indicate BRs at 10-4 level. Mo Xiaohu

12 Mixing model Mixing : (=12º) “12%” rule:
P.Wang, X.H.Mo and C.Z.Yuan: PRD70, (2004) (3.8±1.1)  10 =0º J.L. Rosner: PRD64, (2001) Mixing : (=12º) <f |> = <f | 23S1> cos – <f | 13D1>sin, <f |  > = <f | 23S1> sin + <f | 13D1>cos. “12%” rule: |<f|J/>|2/|<f|23S1>|2 = ee(J/)/ee(23S1)  <f | 23S1> (Rosner’s assumption) 1. <f |> = < f | 23S1 > cos – <f | 13D1 > sin < f |> & < f | 23S1 >  < f | 13D1 > 2. < f |  > = < f | 23S1 > sin + < f | 13D1 > cos  < f |  >  Br(  f) (0.12±0.07)  10 = ±180º The variation of B(  K0S K0L )  10 5 against the pahse  . (0.12±0.07)  10 –5  B  ’’  Ks KL  (3.8±1.1)  10 –5  is the relative phase between <f | 23S1> and <f | 13D1> PRD 70, (2004) B  ’’  Ks KL < 2.1  10 – 4 (90% C.L.) Mo Xiaohu

13 实验检验 Mo Xiaohu

14 BESII /p=0.017(1+p2)1/2 (π)= 65 MeV (K)=62 MeV Two peaks
merge together, undistinguishable p(π)– p(K)=62 MeV Mo Xiaohu

15 BESIII ’ ’’ J/ Simulation results K  K  K  p() =1.837GeV
() =11.7MeV p(K) =1.775GeV (K) =11.0MeV Events ’ p() =1.542GeV () =8.5MeV p(K) =1.467GeV (K) =7.9MeV p() =1.881GeV () =12.0MeV p(K) =1.820GeV (K) =11.3MeV K momentum (GeV) J/ ’’ Events Events K K momentum (GeV) momentum (GeV) Mo Xiaohu All fit error around the level of 10 – 4 GeV

16 BESIII Experimental results
Mo Xiaohu

17  workshop BESIII Very preliminary Unpublished results;
Before cited, ask permission from BESIII collaboration, otherwise,collaboration will be unpleasant. Mo Xiaohu

18 preliminary results: J/  & , ,LS
K K     LS    preliminary results: J/  & , ,LS    K K  LS    Mo Xiaohu

19 ? ? 12% rule test in P-P f.s. enhanced !!
Exception for  final state, there is something unclear, and need more detailed analysis.    contamination is heavy and difficult to be eliminated, more hard for it. ? Mo Xiaohu

20 Fit for the phase between the strong and the electromagnetic amplitudes
Mo Xiaohu

21 ' Pseudoscalar-Pseudoscalar
Form factors of  and  can be calculated in framework of Hadronic Helicity Conservation (HHC), the measurement results can provide test for HHC. S.J. Brodsky and G.P. Lepage : PRD24, 2848 (1981).    kf(10–1 GeV2) 9.61.0 0.4 7.30.5 0.2 E=3.65GeV |Ff(s)|(10–2) 5.50.4 0.2 E=3.65GeV 10.11.0 0.4 8.50.5 0.2 E=3.671GeV 7.50.8 0.5 6.30.4 0.1 pQCD : F / FK = 0.670.01 BESIII: F / FK = 1.310.19 CLEO: F / FK = 1.190.11 Mo Xiaohu

22 Mo Xiaohu, Yuan ChangZheng and Wang Ping
Study of the ρπ puzzle in charmonium decays Mo Xiaohu, Yuan ChangZheng and Wang Ping Getting it all right is a big challenge. And big challenges are worthy of big effects. E.S.Swanson, “The New Heavy Mesons, A Status Report” Mo Xiaohu

23 Conclusion ? Very good! 山重水复疑无路 柳暗花明 ? ? ? ?
柳暗花明 ? ? ? ? Symposium on the“12% rule” and “rho-pi puzzle” in vector charmonium decays Very good! Mo Xiaohu

24 THANKS 谢谢

25 Backup Mo Xiaohu

26 Mo Xiaohu

27 14 M ’ events 14 M 58M J/ events 6.4pb–1 ’ con. data @ 3.65 GeV
27pb–1 ’’ data @ GeV 14 M 4M 3M Mo Xiaohu

28 non-DD decay Mixing : “12%” rule: 13 % charmless decay
J.L. Rosner: PRD64, (2001) 13 % charmless decay Wang, Yuan and Mo, PRD70, (2004) 2.5 % radiative transition J.L. Rosner: hep-ph/ 0.18% + – J/ CLEOc, hep-ph/ Maximum 16% non-DD decay Mixing : <f |> = <f | 23S1> cos – <f | 13D1>sin, <f |  > = <f | 23S1> sin + <f | 13D1>cos. (=12º) “12%” rule: |<f|J/>|2/|<f|23S1>|2 = ee(J/)/ee(23S1)  <f | 23S1> (Rosner’s assumption) 1. <f |> = < f | 23S1 > cos – <f | 13D1 > sin < f |> & < f | 23S1 >  < f | 13D1 > 2. < f |  > = < f | 23S1 > sin + < f | 13D1 > cos  < f |  >  Br(  f) With the results of J/ and  we can obtain the decay information at  , the only undetermined variable here is the phase between | 23S1> and | 13D1> Mo Xiaohu

29 non-DD decay R is Sensitive to phase variation
A prediction of ’’ charmless decays Wang, Yuan and Mo, PRD70, (2004) R is Sensitive to phase variation Phase=0 Average enhancement factor Non-zero phase btwn matrix elements Prediction on ψ(3770) charmless decay branching fraction: 13% (or 3.0MeV) Mo Xiaohu

30 The Relative Phase φ J/ψ Decays: ψ’ Decays:
1. AP : 90 ° M. Suzuki, PRD63, (2001) 2. VP : (106 ±10) ° J. Jousset et al., PRD41, 1389 (1990) D. Coffman et al., PRD38, 2695 (1988) N. N. Achasov, talk at Hadron2001 3. PP : (90 ±10) ° M. Suzuki, PRD60, (1999) 4. VV : (138 ±37) ° L. Köpke and N. Wermes, Phys. Rep. 74, 67 (1989) 5. NN : (89 ±15) ° R. Baldini et al., PLB444, 111 (1998) Large phase ~ |90º| ψ’ Decays: 1. VP : φ =﹣90 ° or ° P. Wang et al. , PRD69, (2004) 2. PP : φ = (﹣82 ±29)° or (+121 ±27) ° J. Z. Bai et al. , PRL9, (2004) Large phase ~ – 90º Mo Xiaohu

31 Mo Xiaohu

32 Mo Xiaohu

33 non-DD decay Theoretical motivation:
Test S- and D- wave mixing scenario Study the phase between S- and D- wave matrix elements (the dynamics of charmonium decay) Experimental need: Neglecting non-DD decay in previous scan experiments Neglecting continuum contribution in exclusive channel measurement Inconsistency between previous measurements (reason remain unknown) Three Experimental approaches : Exclusive Quasi-inclusive Inclusive (leading particle) Mo Xiaohu

34 Exclusive Two points: Con. contr. and its interference with res.
Experimental details refer to Wang, Yuan and Mo: PLB574,41(2003) Wang, Mo and Yuan: PRD70, (2004) BR(´´KSKL) <2.1x BESII, C.Z.Yuan, PRD70, (2004) (e+e– 0) = ( ± 1.7) pb (e+e–  ) = ( ± 0.08) pb (e+e–  ') <28 pb BESII, L.L.Ma et al. , PRD70, (2004) BR(´´ ρπ ) in progress BESII, Z. Wang. CLEOc can improve the measurement! –4.1 –3.5 Two points: Con. contr. and its interference with res. ISR correction and efficiency Mo Xiaohu

35 Quasi-inclusive ´´ f DD Scan Exp. B (DDf ) 1. F(DDf ) B(´´ DD)
B(´´f)= B(´´ DD) • F(DDf ) +B (DDf ) R.M.Baltrusaitis et al., PRL56,2149(1986) 2. B(´´f) F(DDf ) Scan Exp. 3. B (DDf ) B (DDf ) Mo Xiaohu

36 ´´ Inclusive pmaximum < 1GeV pcut > 1.1GeV
D0 D0 K– + K+ – non-DD decay pmaximum < 1GeV pcut > 1.1GeV Leading particle method Mo Xiaohu


Download ppt "Pseudo-scalar Pseudo-scalar final states and 12% rule"

Similar presentations


Ads by Google