Presentation is loading. Please wait.

Presentation is loading. Please wait.

POLAR CURVES Tangents.

Similar presentations


Presentation on theme: "POLAR CURVES Tangents."β€” Presentation transcript:

1 POLAR CURVES Tangents

2 Sketch these graphs: Polar curves Starter: KUS objectives
BAT Find Tangents to Polar curves π‘₯=π‘Ÿπ‘π‘œπ‘ πœƒ 𝑦=π‘Ÿπ‘ π‘–π‘›πœƒ πœƒ=π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› 𝑦 π‘₯ π‘Ÿ 2 = π‘₯ 2 + 𝑦 2 Starter: Sketch these graphs:

3 Notes To start with we can look at using the Polar equation to find tangents to a curve that are parallel or perpendicular to the original line Differentiating and setting the expression equal to 0 𝑦=π‘Ÿπ‘ π‘–π‘›πœƒ π‘₯=π‘Ÿπ‘π‘œπ‘ πœƒ The line from the origin at an angle of 0 is called the β€˜initial line’ π’…π’š π’…πœ½ =𝟎 π’…π’š π’…πœ½ =𝟎 The equation y = rsinΞΈ represents changes in the vertical direction When dy/dΞΈ is 0, that means that there is no movement in the vertical direction (the change in y with respect to a change in ΞΈ is 0) Therefore, if dy/dΞΈ is 0, the curve is parallel to the β€˜initial line’

4 Notes 𝑦=π‘Ÿπ‘ π‘–π‘›πœƒ π‘₯=π‘Ÿπ‘π‘œπ‘ πœƒ The line from the origin at an angle of 0 is called the β€˜initial line’ 𝒅𝒙 π’…πœ½ =𝟎 𝒅𝒙 π’…πœ½ =𝟎 The equation x = rcosΞΈ represents changes in the horizontal direction When dx/dΞΈ is 0, that means that there is no movement in the horizontal direction (the change in x with respect to a change in ΞΈ is 0) οƒ  Therefore, if dy/dΞΈ is 0, the curve is perpendicular to the β€˜initial line’

5 WB22 Find the coordinates of the points on: r = a(1 + cosΞΈ)
Where the tangents are parallel to the initial line ΞΈ = 0 π‘π‘œπ‘ πœƒ= π‘œπ‘Ÿ π‘π‘œπ‘ πœƒ=βˆ’1 (3a/2,Ο€/3) Find ΞΈ in the range 0 ≀ ΞΈ < 2Ο€ Find ΞΈ in the range 0 ≀ ΞΈ < 2Ο€ 𝒓=𝒂(𝟏+π’„π’π’”πœ½) πœƒ= πœ‹ 3 π‘œπ‘Ÿ βˆ’ πœ‹ 3 Use these to find r so you have the full coordinates πœƒ=πœ‹ (0,Ο€) π‘Ÿ=0 π‘Ÿ= 3π‘Ž 2 (π‘“π‘œπ‘Ÿ π‘π‘œπ‘‘β„Ž) (3a/2,-Ο€/3) 3π‘Ž 2 ,Β± πœ‹ 3 π‘Žπ‘›π‘‘ 0,πœ‹ So the curve is parallel to the initial line in these positions:

6 r = asin2ΞΈ, 0 ≀ ΞΈ ≀ Ο€/2 Where the tangents are:
WB23a Find the coordinates and the equations of the tangents to the curve : r = asin2ΞΈ, ≀ ΞΈ ≀ Ο€/ Where the tangents are: Parallel to the initial line Give answers to 3 s.f where appropriate: π‘₯=π‘Ÿπ‘π‘œπ‘ πœƒ 𝑦=π‘Ÿπ‘ π‘–π‘›πœƒ πœƒ=π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› 𝑦 π‘₯ π‘Ÿ 2 = π‘₯ 2 + 𝑦 2 Sketch it to get an idea of where the tangents will be… (2a√2/3,0.955) 𝑦=𝒓 π‘ π‘–π‘›πœƒ The equation of this line is just: (0,0) 𝜽=𝟎 𝑦=π‘Žπ‘ π‘–π‘›2πœƒ π‘ π‘–π‘›πœƒ 𝑑𝑦 π‘‘πœƒ = π‘Ž( 𝑠𝑖𝑛2πœƒπ‘π‘œπ‘ πœƒ + 2π‘π‘œπ‘ 2πœƒπ‘ π‘–π‘›πœƒ ) If dy/dΞΈ = 0, then the part in the bracket must be 0 𝑠𝑖𝑛2πœƒπ‘π‘œπ‘ πœƒ+2π‘π‘œπ‘ 2πœƒπ‘ π‘–π‘›πœƒ=0 Replace sin2ΞΈ and cos2ΞΈ with equivalent expressions 2π‘ π‘–π‘›πœƒ(3π‘π‘œ 𝑠 2 πœƒβˆ’1)=0 2π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒπ‘π‘œπ‘ πœƒ + 2 2 π‘π‘œπ‘  2 πœƒβˆ’1 π‘ π‘–π‘›πœƒ=0 π‘π‘œπ‘  2 πœƒ= 1 3 2π‘ π‘–π‘›πœƒ=0 2π‘ π‘–π‘›πœƒπ‘π‘œ 𝑠 2 πœƒ+4 π‘π‘œπ‘  2 πœƒπ‘ π‘–π‘›πœƒβˆ’2π‘ π‘–π‘›πœƒ=0 πœƒ= =0.955 πœƒ=0 6π‘ π‘–π‘›πœƒπ‘π‘œ 𝑠 2 πœƒβˆ’2π‘ π‘–π‘›πœƒ=0 π‘Ÿ= π‘œπ‘Ÿ π‘Ÿ= 2π‘Ž 2 3

7 WB23b Find the coordinates and the equations of the tangents to the curve :
r = asin2ΞΈ, ≀ ΞΈ ≀ Ο€/ Where the tangents are: Parallel to the initial line Give answers to 3 s.f where appropriate: πœƒ=0 π‘œπ‘Ÿ πœƒ=0.955 (2a√2/3,0.955) π‘Ÿ=0 π‘œπ‘Ÿ π‘Ÿ= 2π‘Ž 2 3 πœƒ=0 π‘π‘œπ‘ πœƒ= 1 3 π‘ π‘–π‘›πœƒ= We need to find the equation of the line above (in polar form…) οƒ  A couple of trig ratios will be useful to us here. We already know that for this point: π‘π‘œπ‘ πœƒ= 1 3 𝐴𝑑𝑗 𝐻𝑦𝑝 Hyp √3 √2 Opp π‘ π‘–π‘›πœƒ= 𝑂𝑝𝑝 𝐻𝑦𝑝 ΞΈ 1 Adj

8 WB23c Find the coordinates and the equations of the tangents to the curve :
r = asin2ΞΈ, ≀ ΞΈ ≀ Ο€/ Where the tangents are: Parallel to the initial line Give answers to 3 s.f where appropriate: πœƒ=0 π‘œπ‘Ÿ πœƒ=0.955 (2a√2/3,0.955) π‘Ÿ=0 π‘œπ‘Ÿ π‘Ÿ= 2π‘Ž 2 3 Opp 2a√2/3 πœƒ=0 ΞΈ π‘π‘œπ‘ πœƒ= 1 3 π‘ π‘–π‘›πœƒ= You can find the equation of the line in Cartesian form, then substitute it into the link between y and r above The Cartesian form will just be y = a, where a is the height of the line 𝑂𝑝𝑝=π»π‘¦π‘Γ—π‘†π‘–π‘›πœƒ Sub in values 𝑂𝑝𝑝= 2π‘Ž Γ— Calculate 𝑂𝑝𝑝= 4π‘Ž 3 3 So this is the Cartesian equation of the tangent… 𝑦= 4π‘Ž 3 3

9 WB23d Find the coordinates and the equations of the tangents to the curve :
r = asin2ΞΈ, ≀ ΞΈ ≀ Ο€/ Where the tangents are: Parallel to the initial line Give answers to 3 s.f where appropriate: πœƒ=0 π‘œπ‘Ÿ πœƒ=0.955 (2a√2/3,0.955) 𝒓= πŸ’π’‚ πŸ‘ πŸ‘ π’„π’π’”π’†π’„πœ½ π‘Ÿ=0 π‘œπ‘Ÿ π‘Ÿ= 2π‘Ž 2 3 πœƒ=0 π‘Ÿ= 4π‘Ž π‘π‘œπ‘ π‘’π‘πœƒ 𝑦= 4π‘Ž 3 3 𝜽=𝟎 Now use the link between y and r above to turn the equation into a polar form… 𝑦=π‘Ÿπ‘ π‘–π‘›πœƒ Replace y with the expression we calculated 4π‘Ž =π‘Ÿπ‘ π‘–π‘›πœƒ Divide by sinΞΈ 4π‘Ž 3 3 π‘ π‘–π‘›πœƒ =π‘Ÿ Alternative form… π‘Ÿ= 4π‘Ž π‘π‘œπ‘ π‘’π‘πœƒ

10 r = asin2ΞΈ, 0 ≀ ΞΈ ≀ Ο€/2 Where the tangents are:
WB24 Find the coordinates and the equations of the tangents to the curve : r = asin2ΞΈ, ≀ ΞΈ ≀ Ο€/ Where the tangents are: b) Perpendicular to the initial line Give answers to 3 s.f where appropriate: So we now need to find the equations of the tangents that are perpendicular to the initial line dx/dΞΈ = 0 We will need to find an expression for x in terms of ΞΈ π‘₯=π‘Ÿπ‘π‘œπ‘ πœƒ Substitute the expression for r in π‘₯=π‘Žπ‘ π‘–π‘›2πœƒπ‘π‘œπ‘ πœƒ

11 r = asin2ΞΈ, 0 ≀ ΞΈ ≀ Ο€/2 Where the tangents are:
WBX4 Find the coordinates and the equations of the tangents to the curve : r = asin2ΞΈ, ≀ ΞΈ ≀ Ο€/ Where the tangents are: b) Perpendicular to the initial line Give answers to 3 s.f where appropriate: π‘₯=π‘Ž(𝑠𝑖𝑛2πœƒπ‘π‘œπ‘ πœƒ) Now we can differentiate 𝑑𝑦 π‘‘πœƒ = π‘Ž( 2π‘π‘œπ‘ 2πœƒπ‘π‘œπ‘ πœƒ βˆ’ 𝑠𝑖𝑛2πœƒπ‘ π‘–π‘›πœƒ If dx/dΞΈ = 0, then the part in the bracket must be 0 2π‘π‘œπ‘ 2πœƒπ‘π‘œπ‘ πœƒβˆ’π‘ π‘–π‘›2πœƒπ‘ π‘–π‘›πœƒ=0 Replace cos2ΞΈ and sin2ΞΈ with equivalent expressions from C3 2(1βˆ’2 𝑠𝑖𝑛 2 πœƒ)π‘π‘œπ‘ πœƒβˆ’2π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒπ‘ π‘–π‘›πœƒ=0 Simplify/Multiply out brackets 2π‘π‘œπ‘ πœƒβˆ’4 𝑠𝑖𝑛 2 πœƒπ‘π‘œπ‘ πœƒβˆ’2𝑠𝑖 𝑛 2 πœƒπ‘π‘œπ‘ πœƒ=0 Group terms 2π‘π‘œπ‘ πœƒβˆ’6 𝑠𝑖𝑛 2 πœƒπ‘π‘œπ‘ πœƒ=0 Factorise 2π‘π‘œπ‘ πœƒ(1βˆ’3 𝑠𝑖𝑛 2 πœƒ)=0 Solve in the range you’re given 2π‘π‘œπ‘ πœƒ=0 𝑠𝑖𝑛 2 πœƒ= 1 3 πœƒ= πœ‹ 2 π‘ π‘–π‘›πœƒ= 1 3 πœƒ=0.615

12 r = asin2ΞΈ, 0 ≀ ΞΈ ≀ Ο€/2 Where the tangents are:
WBX4 Find the coordinates and the equations of the tangents to the curve : r = asin2ΞΈ, ≀ ΞΈ ≀ Ο€/ Where the tangents are: b) Perpendicular to the initial line Give answers to 3 s.f where appropriate: πœƒ= πœ‹ 2 π‘œπ‘Ÿ πœƒ=0.615 π‘Ÿ=0 π‘œπ‘Ÿ π‘Ÿ= 2π‘Ž 2 3 (2a√2/3,0.615) πœƒ= πœ‹ 2 (0,Ο€/2) The equation of this line is just: πœƒ= πœ‹ 2

13 WB24 Find the coordinates and the equations of the tangents to the curve :
r = asin2ΞΈ, ≀ ΞΈ ≀ Ο€/ Where the tangents are: b) Perpendicular to the initial line Give answers to 3 s.f where appropriate: πœƒ= πœ‹ 2 π‘œπ‘Ÿ πœƒ=0.615 π‘Ÿ=0 π‘œπ‘Ÿ π‘Ÿ= 2π‘Ž 2 3 (2a√2/3,0.615) πœƒ= πœ‹ 2 π‘ π‘–π‘›πœƒ= 1 3 π‘π‘œπ‘ πœƒ= We need to find the equation of the line above (in polar form…) οƒ  A couple of trig ratios will be useful to us here (as before). We already know that for this point: π‘ π‘–π‘›πœƒ= 1 3 𝑂𝑝𝑝 𝐻𝑦𝑝 Hyp √3 1 Opp π‘π‘œπ‘ πœƒ= 𝐴𝑑𝑗 𝐻𝑦𝑝 ΞΈ √2 Adj

14 WB24 Find the coordinates and the equations of the tangents to the curve :
r = asin2ΞΈ, ≀ ΞΈ ≀ Ο€/ Where the tangents are: b) Perpendicular to the initial line Give answers to 3 s.f where appropriate: πœƒ= πœ‹ 2 π‘œπ‘Ÿ πœƒ=0.615 π‘Ÿ=0 π‘œπ‘Ÿ π‘Ÿ= 2π‘Ž 2 3 (2a√2/3,0.615) 2a√2/3 πœƒ= πœ‹ 2 ΞΈ π‘ π‘–π‘›πœƒ= 1 3 π‘π‘œπ‘ πœƒ= Adj You can find the equation of the line in Cartesian form, then substitute it into the link between y and r above The Cartesian form will just be x = a, where a is the horizontal distance of the line from the origin 𝐴𝑑𝑗=π»π‘¦π‘Γ—πΆπ‘œπ‘ πœƒ Sub in values 𝐴𝑑𝑗= 2π‘Ž Γ— Calculate 𝐴𝑑𝑗= 4π‘Ž 3 3 So this is the Cartesian equation of the tangent… π‘₯= 4π‘Ž 3 3

15 WB24 Find the coordinates and the equations of the tangents to the curve :
r = asin2ΞΈ, ≀ ΞΈ ≀ Ο€/ Where the tangents are: b) Perpendicular to the initial line Give answers to 3 s.f where appropriate: πœƒ= πœ‹ 2 π‘œπ‘Ÿ πœƒ=0.615 π‘Ÿ=0 π‘œπ‘Ÿ π‘Ÿ= 2π‘Ž 2 3 𝜽= 𝝅 𝟐 (2a√2/3,0.615) 𝒓= πŸ’π’‚ πŸ‘ πŸ‘ π’”π’†π’„πœ½ πœƒ= πœ‹ 2 π‘Ÿ= 4π‘Ž π‘ π‘’π‘πœƒ π‘₯= 4π‘Ž 3 3 Now use the link between x and r above to turn the equation into a polar form… π‘₯=π‘Ÿπ‘π‘œπ‘ πœƒ Replace y with the expression we calculated 4π‘Ž =π‘Ÿπ‘π‘œπ‘ πœƒ Divide by sinΞΈ 4π‘Ž 3 3 π‘π‘œπ‘ πœƒ =π‘Ÿ Alternative form… π‘Ÿ= 4π‘Ž π‘ π‘’π‘πœƒ

16 WB25 Prove that for: r = (p + qcosΞΈ), p and q both > 0 and p β‰₯ q
to have a β€˜dimple’, p < 2q and also p β‰₯ q. (so q ≀ p < 2q) οƒ  We can use the ideas we have just seen for finding tangents here… If the graph is convex, there will be 2 tangents that are perpendicular to the initial line If the graph has a β€˜dimple’, there will be 4 solutions If the graph is a cardioid, there will be 3 solutions (the curve does not go vertical at the origin here)

17 WB25 Prove that for: r = (p + qcosΞΈ), p and q both > 0 and p β‰₯ q
We can find dx/dΞΈ for the above curve, and set it equal to 0 (as we did previously) We can then consider the number of solutions, based on the sine or cos graphs – we need 4 for a β€˜dimple’ to exist π‘₯=π‘Ÿπ‘π‘œπ‘ πœƒ Replace r using the equation π‘₯=(𝑝+π‘žπ‘π‘œπ‘ πœƒ)π‘π‘œπ‘ πœƒ Multiply out the bracket π‘₯=π‘π‘π‘œπ‘ πœƒ+π‘ž π‘π‘œπ‘  2 πœƒ Differentiate (using the Chain rule where needed) 𝑑π‘₯ π‘‘πœƒ = βˆ’π‘π‘ π‘–π‘›πœƒ βˆ’2π‘žπ‘π‘œπ‘ πœƒπ‘ π‘–π‘›πœƒ Chain rule for qcos2ΞΈ π‘žπ‘π‘œπ‘  2 πœƒ We are looking for places where the curve is perpendicular to the initial line, so dx/dΞΈ = 0 βˆ’π‘π‘ π‘–π‘›πœƒβˆ’2π‘žπ‘π‘œπ‘ πœƒπ‘ π‘–π‘›πœƒ=0 π‘ž π‘π‘œπ‘ πœƒ 2 Factorise π‘ π‘–π‘›πœƒ(βˆ’π‘βˆ’2π‘žπ‘π‘œπ‘ πœƒ)=0 2π‘ž(π‘π‘œπ‘ πœƒ) 1 π‘ π‘–π‘›πœƒ π‘ π‘–π‘›πœƒ=0 βˆ’π‘βˆ’2π‘žπ‘π‘œπ‘ πœƒ=0 2π‘žπ‘π‘œπ‘ πœƒπ‘ π‘–π‘›πœƒ Add -2qcosΞΈ πœƒ=0 π‘œπ‘Ÿ πœ‹ βˆ’π‘=2π‘žπ‘π‘œπ‘ πœƒ We don’t need to include 2Ο€ as it is a repeat of the solution for 0 οƒ  This gives us 2 solutions so far… Divide by 2q βˆ’ 𝑝 2π‘ž =π‘π‘œπ‘ πœƒ Solving this equation can give us 0, 1 or 2 answers depending on p and q…

18 WB25 Prove that for: r = (p + qcosΞΈ), p and q both > 0 and p β‰₯ q
π‘ π‘–π‘›πœƒ(βˆ’π‘βˆ’2π‘žπ‘π‘œπ‘ πœƒ)=0 CosΞΈ Ο€/2 3Ο€/2 1 -1 Ο€ 2Ο€ π‘ π‘–π‘›πœƒ=0 βˆ’ 𝑝 2π‘ž =π‘π‘œπ‘ πœƒ πœƒ=0 π‘œπ‘Ÿ πœ‹ If p > 2q Eg) p = 5, q = 1 The fraction will be top-heavy (in this case -5/2) CosΞΈ will be less than -1 No solutions in this range If p < 2q Eg) p = 3, q = 2 The fraction will be β€˜regular’ (in this case -3/4) CosΞΈ will be between 0 and -1 2 solutions in this range As the value for cosΞΈ is negative, it must be between Ο€/2 and 3Ο€/2 If p = 2q Eg) p = 6, q = 3 Cos ΞΈ = -1 1 solution (ΞΈ = Ο€) So p β‰₯ q and p < 2q Therefore: q ≀ p <2q If p was not greater than q, there would be a lot of undefined areas on the graph, and hence the full shape would not exist (there may actually be no defined areas at all)

19 One thing to improve is –
KUS objectives BAT Find Tangents to Polar curves self-assess One thing learned is – One thing to improve is –

20 END


Download ppt "POLAR CURVES Tangents."

Similar presentations


Ads by Google