Presentation is loading. Please wait.

Presentation is loading. Please wait.

Foundation Settlement

Similar presentations


Presentation on theme: "Foundation Settlement"— Presentation transcript:

1 Foundation Settlement
By Kamal Tawfiq, Ph.D., P.E. Fall 2008

2 { { Foundation Settlement: Stotal = Se + Sc
Total Foundation Settlement = Elastic Settlement + Consolidation Settlement Stotal = Se + Sc { Foundation Type (Rigid; Flexible) Elastic Settlement or Immediate Settlement depends on Settlement Location (Center or Corner) { Theory of Elasticity Elastic Settlement Time Depended Elastic Settlement (Schmertman & Hartman Method (1978) Elastic settlement occurs in sandy, silty, and clayey soils. By: Kamal Tawfiq, Ph.D., P.E.

3 Consolidation Settlement (Time Dependent Settlement)
By: Kamal Tawfiq, Ph.D., P.E. Consolidation Settlement (Time Dependent Settlement) * Consolidation settlement occurs in cohesive soils due to the expulsion of the water from the voids. * Because of the soil permeability the rate of settlement may varied from soil to another. * Also the variation in the rate of consolidation settlement depends on the boundary conditions. SConsolidation = Sprimary + Ssecondary Primary Consolidation Volume change is due to reduction in pore water pressure Secondary Consolidation Volume change is due to the rearrangement of the soil particles (No pore water pressure change, Δu = 0, occurs after the primary consolidation) Water Water Table (W.T.) Voids Solids Expulsion of the water

4 Elastic Settlement Se = Bqo (1 - μs) α Se = Bqo (1 - μs) α 2 Es Es
(corner of the flexible foundation) 2 Es Se = Bqo (1 - μs) α 2 (center of the flexible foundation) Es Where α = 1/π [ ln ( √1 + m2 + m / √1 + m2 - m ) + m*ln ( √1 + m2 + 1 / √1 + m ) m = B/L B = width of foundation L = length of foundation By: Kamal Tawfiq, Ph.D., P.E.

5 α, αav, αr 3.0 2.5 α αav αr 2.0 1.5 For circular foundation α = 1
1.0 3.0 1 2 3 4 5 6 7 8 9 10 L / B Values of α, αav, and αr By: Kamal Tawfiq, Ph.D., P.E.

6 Elastic Settlement Using the Strain Influence Factor: [Schmertman & Hartman Method (1978)]
Se = C1 C2 ( q - q) ∑ (Iz / Es ) Δz where Is = strain influence factor C1 = a correction factor for the depth of foundation embedment = [q / (q - q)] C2 = a correction factor to account for creep in soil = log (time in years /0.1) q = stress at the level of the foundation q = overburden pressure = γ Df The variation of the strain influence factor with depth below the foundation is shown in Figure 1. Note that, for square or circular foundations, Iz = 0.1 at z = 0 Iz = 0.5 at z = 0.5B Iz = 0 at z = 2B Similarly, for foundations with L/B ≥ 10 Iz = 0.2 at z = 0 Iz = 0.5 at z = B Iz = 0 at z = 4B Example: B x L q Df q = γ Df Iz Es ΔZ1 ΔZ2 Is3 ΔZ3 Es3 Average Is Average Es ΔZ4 Depth, z

7

8

9

10

11

12

13

14

15

16


Download ppt "Foundation Settlement"

Similar presentations


Ads by Google